Time-Domain Analysis of Transmission Line Circuits

(Part 3)

Dr. José Ernesto Rayas Sánchez

1

2

Outline

- Bouncing diagrams for TLs with ideal excitation pulses and resistive terminations
- Example of a TL with resistive terminations and ideal pulse excitation
- Transients in TLs with capacitive loads
- Examples of TLs with capacitive load (over-driven and under-driven cases)
- Conclusions on TLs with capacitive loads

Dr. J.E. Rayas Sánchez

Lattice Diagrams for Pulses

- We built two lattice diagrams, one for v_{ON} and one for v_{OFF}
- The lattice diagram for v_{OFF} is a negative and delayed version of that one for v_{ON}
- The resultant signals are obtained by adding both lattice diagrams

Dr. J.E. Rayas Sánchez

Example of TL with a Pulse Excitation

 $R_{s} = 75\Omega; R_{L} = 30\Omega; A = 3V; PW = 2.5$ ns $Z_{o} = 50\Omega; \varepsilon_{e} = 3; l = 17.321$ cm

Dr. J.E. Rayas Sánchez

Example Simulated with Aplac

7

8

Dr. J.E. Rayas Sánchez

- C_L can be treated as a time-dependent impedance
- Initially, C_L is discharged, hence $\Gamma_L = -1$
- At the steady state, C_L is fully charged, hence $\Gamma_L = +1$
- At any other time, Γ_L can not be calculated

Dr. J.E. Rayas Sánchez

Transients in TLs with Capacitive Load $(R_s = Z_o)$					
$V_S = $	$ \begin{array}{c} $	$ \begin{array}{c} $	$R_{s} = Z_{o} \qquad t_{d}$ $r = Z_{o}C_{L}$ $(x = 0, t) = v_{I}(t)$ $(x = l, t) = v_{L}(t)$	$=\frac{l}{v_p}$	
	time	$v_I(t)$	$v_L(t)$		
	$0 \le t \le t_d$	$V_o^+ = \frac{V_s Z_o}{R_s + Z_o} = \frac{V_s}{2}$	0		
	$t_d \leq t < 2t_d$	$V_s/2$	$V_{S}[1-e^{-(t-t_{d})/\tau}]$		
	$t = 2t_d$	0	$V_{S}[1-e^{-t_{d}/\tau}]$		
Dr. LE Pavas Sáncha	$t \ge 2t_d$	$V_{S}[1-e^{-(t-2t_{d})/\tau}]$	$V_{s}[1-e^{-(t-t_{d})/\tau}]$		
DI. J.D. Kayas Salicito	J.L.				

	time	$v_I(t)$	$v_L(t)$
	$0 \le t \le t_d$	$V_o^+ \underbrace{\stackrel{\bullet}{(+)}}_{=} v_{\underline{I}}^+$	
	$t_d \leq t < 2t_d$	$V_o^+ \stackrel{\bullet}{\underbrace{()}} v_{\underline{I}}^+$	$2V_{o}^{+} \stackrel{\checkmark}{\longrightarrow} \begin{array}{c} Z_{o} \\ U_{o}^{+} \\ U_{c}^{+} \\ U_{c}^{+$
	$t = 2t_d$	0	$V_{_{S}}[1-e^{-t_{_{d}}/ au}]$
	$t \ge 2t_d$	$2V_{o}^{+} \underbrace{ \begin{array}{c} \swarrow \\ t = 2t_{d} \end{array}}^{\not \sim} C_{L} \underbrace{ \begin{array}{c} \swarrow \\ v_{\underline{l}} \end{array}}^{z_{o}} v_{\underline{l}}^{+} $	$2V_{o}^{+} \stackrel{\checkmark}{\overset{\frown}{\overset{\frown}{\overset{\frown}{\overset{\frown}{\overset{\frown}{\overset{\frown}{\overset{\bullet}}{\overset{\bullet}{\bullet$
r. J.E.]	$t = 2t_d$ $t \ge 2t_d$	$ \begin{array}{c} $	$ \frac{V_{S}[1-e^{-t_{d}/\tau}]}{V_{S}[1-e^{-t_{d}/\tau}]} $ $ \frac{\chi}{V_{o}} \underbrace{V_{o}}_{t=t_{d}} \underbrace{C_{L}}_{v_{L}} \underbrace{v_{L}}_{t}$

11

12

Transients in TLs with Capacitive Load $(R_s = Z_o)$

Dı

TL with Capacitive Load – Example 1 $V_s = 3V; R_s = 50\Omega$ $Z_o = 50\Omega; \varepsilon_e = 3$ l = 17.321 cmt = 0 Z_o, ε_r V_S \overline{C}_L $C_L = 30 \text{pF}$ ► x 3 $V_o^+ = \frac{V_s}{2} = 1.5 \text{ V}$ 2.5 2 $v_I(2t_d) = 0$ volts $2V_o^+[1-e^{-t_d/\tau}]=1.46V$ 1 V_{S} $2V_o^+[1-e^{-2t_d/\tau}] = 2.21\mathrm{V}$ 0.5 v, 0 3 4 6 2 5 8 time (ns) Dr. J.E. Rayas Sánchez

Dr. J. E. Rayas Sánchez http://iteso.mx/~erayas erayas@iteso.mx

TLs with Capacitive Load and Unmatched Source

$V_s =$	$R_{S} \xrightarrow{t=0} t=0$	$\begin{array}{c c} \hline l & \hline \\ \hline Z_o, \varepsilon_r & \hline \\ \hline \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$	$\neq Z_o \qquad t_d = \frac{l}{v}$ $= Z_o C_L$ $= 0, t) = v_1(t)$ $= l, t) = v_L(t)$
	time	$v_I(t)$	$v_L(t)$
	$0 \le t \le t_d$	$V_o^+ = \frac{V_S Z_o}{R_S + Z_o}$	0
	$t_d \leq t < 2t_d$	V_o^+	$2V_o^+[1-e^{-(t-t_d)/\tau}]$
	$t = 2t_d$	$V_o^+ - V_o^+ - \Gamma_S V_o^+ = -\Gamma_S V_o^+$	$2V_o^+[1-e^{-t_d/\tau}]$
	$2t_d \leq t < 3t_d$	$[2V_o^+ + 2\Gamma_s V_o^+][1 - e^{-(t-2t_d)/\tau}] - \Gamma_s V$	$V_o^+ 2V_o^+ [1 - e^{-(t-t_d)/\tau}]$
	$t = 3t_d$	$[2V_o^+ + 2\Gamma_S V_o^+][1 - e^{-t_d/\tau}] - \Gamma_S V_o^+$	$2V_o^+[1-e^{-2t_d/\tau}]$
Dr. J.E. Rayas S	$t > 3t_d$?	?

14

time	$v_I(t)$	$v_L(t)$
$0 \le t \le t_d$	$V_o^+ \underbrace{\begin{pmatrix} \bullet \\ \bullet $	
$t_d \leq t < 2t_d$	$V_o^+ \underbrace{}_{=}^{\circ} \underbrace{v_I^+}_{=}$	$2V_{o}^{+} \underbrace{\bigcirc}_{t=t_{d}}^{\swarrow} C_{L} \underbrace{\searrow}_{t=t_{d}}^{\downarrow} v_{L}^{+}$
$t = 2t_d$	$-\Gamma_{S}V_{o}^{+}$	$2V_o^+[1-e^{-t_d/\tau}]$
$2t_d \le t < 3t_d$	$2V_o^+ + \Gamma_S V_o^+ \stackrel{\checkmark}{} \underbrace{Z_{t_d}}_{C_L} V_{t_d}^+ \overset{*}{} V_{t_d}^+$	$2V_{o}^{+} \underbrace{\begin{pmatrix} z \\ t = t_{d} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$t = 3t_d$	$[2V_o^+ + 2\Gamma_s V_o^+][1 - e^{-t_d/\tau}] - \Gamma_s V_o^+$	$2V_o^+[1-e^{-2t_d/ au}]$
$t > 3t_d$?	?

TLs with Capacitive Load and Unmatched Source

TLs with Capacitive Load and Unmatched Source

Dr. J.E. Rayas Sánchez

Dr. J. E. Rayas Sánchez http://iteso.mx/~erayas erayas@iteso.mx

16

Dr. J. E. Rayas Sánchez http://iteso.mx/~erayas erayas@iteso.mx

Dr. J. E. Rayas Sánchez http://iteso.mx/~erayas erayas@iteso.mx

TL with Capacitive Load – Example 6 R_S $V_{\rm S} = 3 {\rm V}; R_{\rm S} = 0.01 {\Omega}$ t = 0 $Z_o = 50\Omega; \ \varepsilon_e = 3$ V_S Z_o, ε_r $\overline{\ }C_L$ l = 17.321cm $C_L = 3 \text{pF}$ ► x 8 6 volts 2 0 -2∟ 0 10 15 5 20 25 time (ns) Dr. J.E. Rayas Sánchez

Dr. J. E. Rayas Sánchez http://iteso.mx/~erayas erayas@iteso.mx

22

TL with Capacitive Load – Example 6c R_S $V_{\rm S} = 3 {\rm V}; R_{\rm S} = 0.01 {\Omega}$ t = 0 $Z_o = 50\Omega; \ \varepsilon_e = 3$ V_S Z_o, ε_r \overline{C}_L l = 17.321cm $C_L = 3 \text{pF}$ ► x 10 8 volts 4₀ 20 60 80 100 40 time (ns) Dr. J.E. Rayas Sánchez

Dr. J. E. Rayas Sánchez http://iteso.mx/~erayas erayas@iteso.mx

TL with Capacitive Load – Example 6e R_S $V_{\rm S} = 3 {\rm V}; R_{\rm S} = 0.01 {\Omega}$ t = 0 $Z_o = 50\Omega; \ \varepsilon_e = 3$ V_S Z_o, ε_r \overline{C}_L l = 17.321cm $C_L = 3 \mathrm{pF}$ ► x 10 8 6 volts 4 2 0 -4₀ 500 1000 1500 2000 2500 3000 time (ns) Dr. J.E. Rayas Sánchez

Dr. J. E. Rayas Sánchez http://iteso.mx/~erayas erayas@iteso.mx

TL with Capacitive Load – Example 8 $V_{s} = 3V; R_{s} = 100\Omega$ t = 0 $Z_o = 50\Omega; \ \varepsilon_e = 3$ Z_o, ε_r V_S \overline{C}_L l = 17.321cm $C_L = 3 p F$ **▶** x 3 $V_{o}^{+} = V_{S}Z_{o}/(R_{S} + Z_{o}) = 1V$ 2.5 $\Gamma_{s} = \frac{R_{s} - Z_{o}}{R_{s} + Z_{o}} = 0.333$ $v_{I}(2t_{d}) = -\Gamma_{s}V_{o}^{+} = -0.333V$ s 1.5 1 0 5 V_{S} $2V_o^+[1-e^{-\infty/\tau}] = 2V_o^+ = 2V$ v_{f} 0 v_L -0.5 L $2V_o^+ + \Gamma_S V_o^+ = 2.333 \mathrm{V}$ Dr. J.E. Rayas Sánchez 10 5 15

> Dr. J. E. Rayas Sánchez http://iteso.mx/~erayas erayas@iteso.mx

time (ns)

Transients in TLs with Capacitive Loads

SOME CONCLUSIONS:

- Lattice diagrams can not be directly applied
- If $\Gamma_s = 0$ analytical solutions are easy, otherwise the problem becomes too complex for $t > 3t_d$ (simulation required)
- If $\Gamma_s > 0$, the line behaves as an under-driven line
- If $\Gamma_s < 0$, there will be overshooting voltages at the load (over-driven line)

• If $\Gamma_S \ll 0$, there will be significant oscillations at the load Dr. J.E. Rayas Sánchez