Signal Integrity and High-Speed Interconnects
 Assignment 3

April 2006
Dr. J. E. Rayas Sánchez

Problem 1

The circuit shown below has the following parameter values: $V_{S}=1.5 \mathrm{~V}, R_{S}=10 \Omega, R_{L}=100 \Omega, Z_{o}=50$ $\Omega, \varepsilon_{e}=3.35$, and $l=16.39 \mathrm{~cm}$.

Using a lattice diagram, plot the voltage at the input of the line, $v(x=0, t)$, at the load, $v(x=l, t)$, and at the middle of the line, $v(x=l / 2, t)$, from 0 to 6 ns . Verify your results by simulating the circuit in APLAC.

Problem 2

In this problem you will investigate the transient effects of inductive discontinuities in transmission line circuits with capacitive loads. The following circuit is a first-order model of two microstrip lines connected through a via. Each microstrip line is modeled with a lossless transmission line, and the via is modeled with a pure inductance L_{ν}. The following parameter values are used: $V_{S}=3 \mathrm{~V}, R_{S}=25 \Omega, C_{L}=3$ $\mathrm{pF}, Z_{1}=Z_{2}=50 \Omega, \varepsilon_{e}=3, l_{1}=l_{2}=8.6605 \mathrm{~cm}$.

a) Simulate the circuit in APLAC using $L_{v}=0 \mathrm{H}$. Plot $V_{S}, v_{l}(t)$, and $v_{L}(t)$ from 0 to 10 ns . Verify that $v_{I}\left(0<t<2 t_{d}\right)=V_{o}^{+}$and that $v_{l}\left(2 t_{d}\right)=-\Gamma_{S} V_{o}^{+}$, where t_{d} is the total flight time (or time delay) from the source to the load, and V_{o}^{+}is the initial incident voltage wave amplitude at the input of the line.
b) Simulate the circuit in APLAC using $L_{v}=10 \mathrm{nH}$. Plot $V_{S}, v_{I}(t)$, and $v_{L}(t)$ from 0 to 10 ns . Verify that $v_{I}\left(0<t<t_{d}\right)=V_{o}^{+}$and that $v_{l}\left(2 t_{d}\right) \neq-\Gamma_{S} V_{o}^{+}$. Notice that there is a new transient effect on v_{I} at $t=t_{d}$ due to the inductive discontinuity. Derive an expression to calculate $v_{l}\left(t_{d}\right)$.

Problem 3

The circuit shown below has the following parameter values: $A=2 \mathrm{~V}, P W=2 \mathrm{~ns}, R_{S}=30 \Omega, R_{L}=80 \Omega$, $Z_{o}=50 \Omega, \varepsilon_{e}=3.7$, and $l=7.7981 \mathrm{~cm}$.

Using a lattice diagram, plot the current at the input of the line, $i(x=0, t)$, and at the load, $i(x=l, t)$, from 0 to 8 ns . Verify your results by simulating the circuit in APLAC.

Problem 4

Solve the problem 1 described above using Bergeron Diagrams.

Submission deadline: Thursday May 4, 2006

