Signal Integrity and High-Speed Interconnects
 Assignment 2

April 2006
Dr. J. E. Rayas Sánchez

Problem 1

One way of indirectly measuring the Z parameters of a two-port network is by directly measuring the following four input impedances: $Z_{s c}{ }^{(1)}, Z_{s c}{ }^{(2)}, Z_{o c}{ }^{(1)}$, and $Z_{o c}{ }^{(2)}$, as illustrated below:

Assuming that the network is reciprocal, derive formulas to calculate Z_{11}, Z_{12}, Z_{22}, and Z_{21}, in terms of the four previous input impedances.

Problem 2

The two-port network shown below is driven at both ports such that the port voltages and currents have the following values (measured with respect to a reference impedance of 50Ω):

Calculate the input impedance at each port ($Z_{\text {in } 1}$ and $Z_{\text {in } 2}$), and the incident and reflected voltage waves at each port $\left(V_{1}^{+}, V_{1}^{-}, V_{2}^{+}\right.$, and $\left.V_{2}^{-}\right)$.

Problem 3

A four-port network has the S parameters shown below (measured at a given operating frequency).

$$
\boldsymbol{S}=\left[\begin{array}{cccc}
0.15^{\angle 80^{\circ}} & 0.9^{\angle 45^{\circ}} & 0.2^{\angle-45^{\circ}} & 0 \\
0.9^{\angle 45^{\circ}} & 0 & 0 & 0.35^{\angle 60^{\circ}} \\
0.2^{\angle-45^{\circ}} & 0 & 0 & 0.75^{\angle-35^{\circ}} \\
0 & 0.35^{\angle 60^{\circ}} & 0.75^{\angle-35^{\circ}} & 0
\end{array}\right]
$$

a) Is the network reciprocal?; b) Is the network lossless?; c) What is the return loss at port 1 when all
other ports are terminated with matched loads?; d) What is the insertion loss and phase delay (in degrees) between port 2 and 4, when all other ports are terminated with matched loads?; e) What is the return loss at port 1 if port 3 is terminated with a short circuit and all other ports are terminated with matched loads?

Problem 4

For the following lumped circuit (third order low-pass filter), derive a formula to calculate S_{21} with respect to a reference impedance $Z_{o}=50 \Omega$.

Using $L=1.65 \mathrm{nH}$ and $C=1.1791 \mathrm{pF}$, plot $\left|S_{21}\right|$ versus frequency, from 0.1 GHz to 15 GHz (use Matlab or any other similar program). Compare your plot with that one obtained by simulating the circuit using APLAC.

Problem 5

Using ABCD parameters, calculate the voltage at the load of the following circuit (assume $V_{S}=1.5 \mathrm{~V} \angle 0^{\circ}$, $R_{S}=30 \Omega, Z_{o}=50 \Omega, R_{L}=70 \Omega$, and $\left.l=\lambda / 6\right)$.

The previous transmission line is divided in two by an inductive transition (for instance, this inductance could represent a simplified model of a via), with $X_{L}=20 \Omega$, as follows:

Using again ABCD parameters, re-calculate the voltage at the load.

Submission deadline: Thursday April 27, 2006

