Frequency-Domain Analysis of Transmission Line Circuits

 (Part 2)Dr. José Ernesto Rayas-Sánchez

Outline

- The transmission or ABCD matrix
- ABCD parameters
- Cascaded connections of 2-port networks
- Conversion between ABCD, Z, Y, and S parameters
- Analyzing interconnects with discontinuities
- Microstrip discontinuities
- Waveguide discontinuities

The Transmission Matrix (ABCD Parameters)

- Many practical high-frequency circuits consists of cascaded connections of two o more two-port networks
- The Transmission Matrix, or ABCD Parameters, or Chain Parameters, or Cascading Parameters, are very convenient for analyzing cascaded two-port circuits

Definition of ABCD Parameters

- The ABCD matrix is defined only for two-port networks:

$\left[\begin{array}{l}V_{1} \\ I_{1}\end{array}\right]=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]\left[\begin{array}{c}V_{2} \\ I_{2}\end{array}\right]$
$A=\left.\frac{V_{1}}{V_{2}}\right|_{I_{2}=0}$
$B=\left.\frac{V_{1}}{I_{2}}\right|_{V_{2}=0}$

$$
C=\left.\frac{I_{1}}{V_{2}}\right|_{I_{2}=0}
$$

$$
D=\left.\frac{I_{1}}{I_{2}}\right|_{V_{2}=0}
$$

Cascaded Connections of Two-Port Networks

- The ABCD matrix of a cascaded connection is the multiplication of the corresponding ABCD matrices:

$$
\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right] \quad\left[\begin{array}{c}
V_{2} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right]\left[\begin{array}{c}
V_{3} \\
I_{3}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]\left[\begin{array}{ll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right]\left[\begin{array}{c}
V_{3} \\
I_{3}
\end{array}\right]
$$

Converting ABCD to other Parameters

Frequency-Domain Analysis of Transmission Line Circuits (Part 2)

Dr. José Ernesto Rayas-Sánchez
February 20, 2020

Properties of the ABCD Matrix

- If the 2-port network is lossless, A and D are real, B and C are imaginary
- If the 2-port network is reciprocal, the determinant of the ABCD matrix is one

$$
A D-B C=1
$$

Converting Between Different Parameters

	[z]	[Y]	[h]	[ABCD]	
[Z]	$\begin{aligned} & Z_{11} Z_{12} \\ & Z_{21} Z_{22} \end{aligned}$	$\begin{array}{cc} \frac{Z_{22}}{\Delta Z} & -\frac{Z_{12}}{\Delta Z} \\ -\frac{Z_{21}}{\Delta Z} & \frac{Z_{11}}{\Delta Z} \end{array}$	$\begin{array}{ll} \frac{\Delta Z}{Z_{22}} & \frac{Z_{12}}{Z_{22}} \\ -\frac{Z_{21}}{Z_{22}} & \frac{1}{Z_{22}} \end{array}$	$\begin{aligned} & \frac{Z_{11}}{Z_{21}} \frac{\Delta Z}{Z_{21}} \\ & \frac{1}{Z_{21}} \frac{Z_{22}}{Z_{21}} \end{aligned}$	
[Y]	$\begin{aligned} & \frac{Y_{22}}{\Delta Y}-\frac{Y_{12}}{\Delta Y} \\ & -\frac{Y_{21}}{\Delta Y} \frac{Y_{11}}{\Delta Y} \end{aligned}$	$\begin{array}{ll} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{array}$	$\begin{array}{cc} \frac{1}{Y_{11}} & -\frac{Y_{12}}{Y_{11}} \\ \frac{Y_{21}}{Y_{11}} & \frac{\Delta Y}{Y_{11}} \end{array}$	$\begin{aligned} & -\frac{Y_{22}}{Y_{21}}-\frac{1}{Y_{21}} \\ & -\frac{\Delta Y}{Y_{21}}--\frac{Y_{11}}{Y_{21}} \end{aligned}$	
[h]	$\begin{array}{cc} \frac{\Delta h}{h_{22}} & \frac{h_{12}}{h_{22}} \\ -\frac{h_{21}}{h_{22}} & \frac{1}{h_{22}} \end{array}$	$\begin{array}{cc}\frac{1}{h_{11}} & -\frac{h_{12}}{h_{11}} \\ \frac{h_{21}}{h_{11}} & \frac{\Delta h}{h_{11}}\end{array}$	$\begin{aligned} & h_{11} h_{12} \\ & h_{21} h_{22} \end{aligned}$	$\begin{aligned} & -\frac{\Delta h}{h_{21}}-\frac{h_{11}}{h_{21}} \\ & -\frac{h_{22}}{h_{21}}-\frac{1}{h_{21}} \end{aligned}$	
[ABCD]	$\begin{aligned} & \frac{A}{C} \\ & \frac{\Delta A B C D}{C} \\ & \frac{1}{C} \\ & \frac{D}{C} \end{aligned}$	$\frac{D}{B}$ $-\frac{\triangle A B C D}{B}$ $-\frac{1}{B}$ \bar{A}	$\begin{array}{cc}\frac{B}{D} & \frac{\triangle A B C D}{D} \\ -\frac{1}{D} & \frac{C}{D}\end{array}$	$\begin{array}{ll} A B \\ C & B \end{array}$	$\begin{aligned} & \Delta Z=\operatorname{Det}(\mathbf{Z}) \\ & \Delta Y=\operatorname{Det}(\boldsymbol{Y}) \\ & \Delta h=\operatorname{Det}(\boldsymbol{H}) \end{aligned}$

Frequency-Domain Analysis of Transmission Line Circuits (Part 2)
Dr. José Ernesto Rayas-Sánchez
February 20, 2020

ABCD Parameters for Useful Circuits

$$
\begin{array}{ll}
A=1 & B=Z \\
C=0 & D=1
\end{array}
$$

$$
\begin{array}{cc}
A=1 & B=0 \\
C=Y & D=1
\end{array}
$$

ABCD Parameters for Useful Circuits (cont.)

$$
\begin{gathered}
A=1+\frac{Z_{1}}{Z_{3}} \quad B=Z_{1}+Z_{2}+\frac{Z_{1} Z_{2}}{Z_{3}} \\
C=\frac{1}{Z_{3}} \quad D=1+\frac{Z_{2}}{Z_{3}}
\end{gathered}
$$

$$
\begin{array}{cc}
A=1+\frac{Y_{2}}{Y_{3}} & B=\frac{1}{Y_{3}} \\
C=Y_{1}+Y_{2}+\frac{Y_{1} Y_{2}}{Y_{3}} & D=1+\frac{Y_{1}}{Y_{3}}
\end{array}
$$

ABCD Parameters for Useful Circuits (cont.)

$$
\begin{array}{cc}
A=N & B=0 \\
C=0 & D=1 / N
\end{array}
$$

$$
A=\cos \beta l \quad B=j Z_{0} \sin \beta l
$$

$$
Z_{0,}, \beta
$$

$$
C=j Y_{0} \sin \beta l \quad D=\cos \beta l
$$

ABCD Parameters for Useful Circuits (cont.)

$$
\begin{array}{cc}
A=\cosh \gamma l & B=Z_{0} \sinh \gamma l \\
C=Y_{0} \sinh \gamma l & D=\cosh \gamma
\end{array}
$$

Analyzing Interconnects

As a first-order approximation ("hand" calculations),

- Uniform interconnects can be modeled by transmission lines (in many cases lossless)
- Transitions or discontinuities can be modeled by equivalent lumped circuits (estimating their values by formulae or by curve-fitting), or directly by Z , Y , or ABCD matrices obtained from measured S parameters
- Each section is represented by its ABCD matrix, Z matrix or Y matrix
- Calculations are performed by combining the corresponding matrices

Modeling Interconnects with Transitions - Ex. 1

Frequency-Domain Analysis of Transmission Line Circuits (Part 2)
Dr. José Ernesto Rayas-Sánchez
February 20, 2020

Microstrip Discontinuities

Microstrip Discontinuities (cont.)

(D. M. Pozar, Microwave Engineering, Wiley, 2005) ${ }_{16}$

Frequency-Domain Analysis of Transmission Line Circuits (Part 2)

Dr. José Ernesto Rayas-Sánchez
February 20, 2020

Microstrip Discontinuities (cont.)

Rectangular Waveguide Discontinuities

Frequency-Domain Analysis of Transmission Line Circuits (Part 2)
Dr. José Ernesto Rayas-Sánchez
February 20, 2020

Rectangular Waveguide Discontinuities (cont.)

