Frequency-Domain Analysis of Transmission Line Circuits

(Part 1)

Dr. José Ernesto Rayas-Sánchez

Outline

- N-port networks
- Impedance matrix representation (Z-parameters)
- Admittance matrix representation (Y-parameters)
- Hybrid matrix representation (H-parameters)
- Scattering matrix representation (S-parameters)
- Meaning of the S-parameters
- Conversion between Y-Z-S parameters
- Properties of the S matrix

An N-port High-Speed Network

Examples of N-port Networks

Impedance Matrix Representation (\mathbf{Z})

$$
\boldsymbol{V}=\left[\begin{array}{c}
V_{1} \\
V_{2} \\
\vdots \\
V_{N}
\end{array}\right] \quad \boldsymbol{I}=\left[\begin{array}{c}
I_{1} \\
I_{2} \\
\vdots \\
I_{N}
\end{array}\right] \quad \boldsymbol{Z}=\left[\begin{array}{cccc}
Z_{11} & Z_{12} & \ldots & Z_{1 N} \\
Z_{21} & Z_{22} & \ldots & Z_{2 N} \\
\vdots & & & \\
Z_{N 1} & Z_{N 2} & \ldots & Z_{N N}
\end{array}\right]
$$

Each element of matrix \mathbf{Z} is given by

$$
Z_{i j}=\left.\frac{V_{i}}{I_{j}}\right|_{I_{k}=0 \text { for } k \neq j}
$$

Z-Parameters for 2-Port Networks

$$
\begin{aligned}
& \boldsymbol{Z}=\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]
\end{aligned}
$$

Equivalent circuit:

Admittance Matrix Representation (\mathbf{Y})

$$
\boldsymbol{V}=\left[\begin{array}{c}
V_{1} \\
V_{2} \\
\vdots \\
V_{N}
\end{array}\right] \quad \boldsymbol{I}=\left[\begin{array}{c}
I_{1} \\
I_{2} \\
\vdots \\
I_{N}
\end{array}\right] \quad \boldsymbol{Y}=\left[\begin{array}{cccc}
Y_{11} & Y_{12} & \ldots & Y_{1 N} \\
Y_{21} & Y_{22} & \ldots & Y_{2 N} \\
\vdots & & & \\
Y_{N 1} & Y_{N 2} & \ldots & Y_{N N}
\end{array}\right]
$$

Each element of matrix \boldsymbol{Y} is given by

$$
Y_{i j}=\frac{I_{i}}{\left.V_{j}\right|_{V_{k}=0 \text { for } k \neq j}}
$$

Y-Parameters for 2-Port Networks

$$
\begin{aligned}
& \boldsymbol{Y}=\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right]
\end{aligned}
$$

Equivalent circuit:

H-Parameters (Hybrid) for 2-Port Networks

Equivalent circuit:

Some Properties of the \mathbf{Z} an \boldsymbol{Y} Matrices

- If the network is reciprocal (passive and not containing any nonreciprocal media such as ferrites or plasmas), then \boldsymbol{Z} and \boldsymbol{Y} are symmetric,

$$
Z_{i j}=Z_{j i} \quad Y_{i j}=Y_{j i}
$$

- If the network is lossless, all the elements in \boldsymbol{Z} and \boldsymbol{Y} are purely imaginary
- In most practical cases, high-speed interconnects can be considered as reciprocal networks, and in some cases, lossless networks

The Scattering Matrix Representation (S)

- They can be more easily obtained at high frequencies:
- Incident and reflected waves can be measured using a Vector Network Analyzer (VNA)
- They do not require "shorts" or "opens" (active devices might oscillate or self-destroy)

- They are more directly related to high-frequency effects ($\Gamma, T, I L, R L, S W R$, etc.)
- We can convert back and forth between S, Y and Z parameters

The Scattering Matrix (S)

$V_{k}^{+}=0$ if we terminate port k with a matched $\operatorname{load}\left(Z_{L k}=Z_{0 k}\right)$ Dr. J. E. Rayas-Sánchez

Meaning of the S-parameters

- $S_{i i}$ represents the reflection coefficient at port i when all the remaining ports are terminated with matched loads
- $S_{i j}$ represents the transmission coefficient from port j to port i when all the other ports are terminated with matched loads

Meaning of the S-parameters (cont.)

S_{11} : forward reflection coefficient (input match)
S_{22} : reverse reflection coefficient (output match)
S_{21} : forward transmission coefficient (gain or loss)
S_{12} : reverse transmission coefficient (isolation)

$$
\begin{array}{ll}
S_{i i} \neq \Gamma_{i} & S_{i i}=\left.\frac{V_{i}^{-}}{V_{i}^{+}}\right|_{V_{k}^{+}=0 \text { for } k \neq i}=\Gamma_{i V_{k}^{+}=0 \text { for } k \neq i} \\
S_{i j} \neq T_{j i} & S_{i j}=\left.\frac{V_{i}^{-}}{V_{j}^{+}}\right|_{V_{k}^{+}=0 \text { for } k \neq j}=\left.T_{j i}\right|_{V_{k}^{+}=0 \text { for } k \neq j}
\end{array}
$$

Conversion between \boldsymbol{S} and \boldsymbol{Y} and \mathbf{Z} Matrices

$$
\left.\begin{array}{l}
\boldsymbol{S}=(\mathbf{Z}+\mathbf{1})^{-1}(\mathbf{Z}-\mathbf{1}) \\
\boldsymbol{Z}=(\mathbf{1}+\boldsymbol{S})(\mathbf{1}-\boldsymbol{S})^{-1}
\end{array}\right\} \begin{aligned}
& \text { (normalized } \mathbf{Z}, \\
& \text { assuming all ports } \\
& \text { have the same } \left.Z_{0}\right)
\end{aligned}
$$

where 1 is the identity matrix (N by N)

$$
\begin{aligned}
\boldsymbol{Z} & =\boldsymbol{Y}^{-1} \\
\boldsymbol{Y} & =\boldsymbol{Z}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{S}=\left(\boldsymbol{Z} \boldsymbol{Y}_{0}+\mathbf{1}\right)^{-1}\left(\boldsymbol{Z} \boldsymbol{Y}_{0}-\mathbf{1}\right) \\
& \boldsymbol{Z}=\boldsymbol{Y}_{0}^{-1}(\mathbf{1}+\boldsymbol{S})(\mathbf{1}-\boldsymbol{S})^{-1}
\end{aligned}
$$

where $\mathbf{1}$ is the identity matrix (N by N) and

$$
\left.\left.\begin{array}{rl}
\boldsymbol{Y}_{0} & =\operatorname{diag}\left(1 / Z_{01}\right. \\
1 / Z_{02} & \ldots
\end{array}\right] / Z_{0 N}\right)
$$

Some Properties of the \boldsymbol{S} Matrix

- If the network is reciprocal (passive and not containing any nonreciprocal media such as ferrites or plasmas), then \boldsymbol{S} is symmetric,

$$
S_{i j}=S_{j i}
$$

- If the network is lossless, matrix \boldsymbol{S} is unitary (orthonormal complex)

$$
\sum_{k=1}^{N} S_{k i} S_{k i}^{*}=1 \quad \sum_{k=1}^{N} S_{k i} S_{k j}^{*}=0
$$

- In most practical cases, high-speed interconnects can be considered as reciprocal networks, and in some cases, lossless networks

