Fundamental Transmission Line Theory

(Part 4)

Dr. José Ernesto Rayas-Sánchez

Outline

- Lossy transmission lines
- The low-loss TL
- The lossy distortionless TL
- Lossy vs lossless transmission lines

Fundamental Transmission Line Theory (Part 4)

Dr. José Ernesto Rayas-Sánchez
February 10, 2014

Lossy Transmission Lines

- In practice, all transmission lines have losses due to some finite conductivity and/or lossy dielectric
- These losses are usually small
- For analysis purposes (first-order approximations), these losses may be neglected
- There are two special cases of interest:
- The low-loss line
- The lossy distortionless line

The Low-Loss Transmission Line

- It is a line where $R \ll \omega L$ and $G \ll \omega C$

$$
\begin{gathered}
\gamma=\sqrt{(R+j \omega L)(G+j \omega C)} \\
\gamma=\sqrt{(j \omega L)(j \omega C)\left(1+\frac{R}{j \omega L}\right)\left(1+\frac{G}{j \omega C}\right)} \\
\gamma=j \omega \sqrt{L C} \sqrt{1-j\left(\frac{R}{\omega L}+\frac{G}{\omega C}\right)-\frac{R G}{\omega^{2} L C}} \\
\gamma \approx j \omega \sqrt{L C} \sqrt{1-j\left(\frac{R}{\omega L}+\frac{G}{\omega C}\right)} \\
\text { Using } \sqrt{1+x}=1+\frac{1}{2} x-\frac{1}{2 \cdot 4} x^{2}+\frac{1 \cdot 3}{2 \cdot 4 \cdot 6} x^{3}-\ldots
\end{gathered}
$$

The Low-Loss Transmission Line (cont.)

- It is a line where $R \ll \omega L$ and $G \ll \omega C$

$$
\begin{aligned}
& \gamma \approx j \omega \sqrt{L C}\left[1-\frac{j}{2}\left(\frac{R}{\omega L}+\frac{G}{\omega C}\right)\right] \\
& \gamma \equiv \alpha+j \beta \quad \\
& \beta \approx \omega \sqrt{L C \quad \quad \beta \text { is almost a linear function of } \omega} \begin{array}{l}
\text { (no dispersion) }
\end{array} \\
& \alpha \approx \frac{1}{2}\left(R \sqrt{\left.\frac{C}{L}+G \sqrt{\frac{L}{C}}\right) \quad Z_{0}=\sqrt{\frac{R+j \omega L}{G+j \omega C}} \approx \sqrt{\frac{L}{C}}}\right. \\
& \alpha \approx \frac{1}{2}\left(\frac{R}{Z_{0}}+G Z_{0}\right) \quad \alpha_{c} \approx \frac{R}{2 Z_{0}} \quad \alpha_{d} \approx \frac{G Z_{0}}{2}
\end{aligned}
$$

The Lossy Distorsionless Transmission Line

- It is a line where $R / L=G / C$ (Heaviside condition)

$$
\begin{gathered}
\text { Since } \gamma=j \omega \sqrt{L C} \sqrt{1-j\left(\frac{R}{\omega L}+\frac{G}{\omega C}\right)-\frac{R G}{\omega^{2} L C}} \\
\gamma=j \omega \sqrt{L C} \sqrt{1-2 j \frac{R}{\omega L}-\frac{R^{2}}{\omega^{2} L^{2}}} \\
+j \beta \quad \gamma=j \omega \sqrt{L C\left(1-j \frac{R}{\omega L}\right)} \\
\beta=\omega \sqrt{L C \quad} \quad \alpha=R \sqrt{\frac{C}{L}}
\end{gathered}
$$

Oliver Heaviside (1850-1925)
β is a linear function of ω (non dispersive TL)
α is independent of ω

Fundamental Transmission Line Theory (Part 4)

Dr. José Ernesto Rayas-Sánchez
February 10, 2014

Lossy vs Lossless Transmission Lines

$$
\begin{aligned}
& V(z)=V_{0}^{+}\left[e^{-r z}+\Gamma e^{+r}\right] \\
& I(z)=\frac{V_{0}^{+}}{Z_{0}}\left[e^{-r n}-\Gamma e^{+p z}\right] \\
& \gamma=\sqrt{ }(R+j \omega L)(G+j \omega C) \\
& \gamma \equiv \alpha+j \beta \\
& Z_{0}=\sqrt{\frac{R+j \omega L}{G+j \omega C}} \\
& V(z)=V_{0}^{+}\left[e^{-j \beta z}+\Gamma e^{+j \beta z}\right] \\
& I(z)=\frac{V_{0}^{+}}{Z_{0}}\left[e^{-j \beta z}-\Gamma e^{+j \beta z}\right] \\
& \beta=\omega \sqrt{L C} \quad Z_{0}=\sqrt{\frac{L}{C}} \\
& \Gamma_{z}(z)=\Gamma e^{+2 j \beta z} \\
& \Gamma_{z}(z)=\Gamma e^{+2 z} \\
& Z_{0} \equiv \frac{V_{0}^{+}}{I_{0}^{+}}=\frac{V_{0}^{-}}{-I_{0}^{-}} \quad \Gamma=\frac{V_{0}^{-}}{V_{0}^{+}}=\frac{Z_{\mathrm{L}}-Z_{0}}{Z_{\mathrm{L}}+Z_{0}} \quad \lambda=\frac{V_{\mathrm{p}}}{f}=\frac{2 \pi}{\beta} \quad v_{\mathrm{p}}=\frac{\omega}{\beta}
\end{aligned}
$$

