High-Frequency Filters

(Part 1)

Dr. José Ernesto Rayas-Sánchez

Outline

- Filter design at high frequencies
- General characteristics of filters
- Methods for filter design at high-frequencies
- The insertion loss method
- Example of a low-pass prototype filter design

Filter Design at High-Frequencies

- Lumped inductors and capacitors are unsuitable for frequencies above 500 MHz
- At high-frequencies, we use distributed elements
- An impedance-normalized low-pass filter is the basic building block
- We also use a normalized frequency Ω
- Transformations are used to convert lumped elements to distributed elements (e.g. Richards transformation, Kuroda identities, etc.)
- Transfer function is usually attenuation or insertion loss (instead of voltage gain)
 Dr. J. E. Rayas-Sánchez

(R. Ludwig and P. Bretchko, RF Circuit Design, Prentice Hall, 2000) $_4$

General Methods for Filter Design

- The Image Parameter method
- The Insertion Loss method
- CAD techniques

Power-Loss Ratio Characterization $P_{LR} = \frac{P_{inc}}{P_L} = \frac{\text{power from the source}}{\text{power delivered to the load}} = \frac{P_{inc}}{P_{inc} - P_{ref}} = (1 - |\Gamma|^2)^{-1}$ $IL = 10 \log P_{LR} = -10 \log (1 - |\Gamma(\omega)|^2)$ $P_{LR} = \frac{1}{1 - |\Gamma(\omega)|^2}$

It can be shown that $\Gamma(\omega)$ is an even function of ω ($\Gamma(\omega)$ can be represented by even series of the form $k_0 + k_2 \omega^2 + k_4 \omega^4 + ...$)

Since $|\Gamma(\omega)| \le 1$, it can be expressed as

 $|\Gamma(\omega)|^2 = \frac{M(\omega^2)}{M(\omega^2) + N(\omega^2)}$ then $P_{LR} = 1 + \frac{M(\omega^2)}{N(\omega^2)}$

Dr. J. E. Rayas-Sánchez

(D. M. Pozar, Microwave Engineering, Wiley, 2005) 15

Element Values L-P Prototypes (Chebyshev)

(Assuming $g_0 = 1$ and $\omega_c = 1$)												
0.5 dB Ripple												
Ν	g_1	g_2	g_3	g_4	g_5	g_6	<i>g</i> 7	g_8	<i>9</i> 9	g_{10}	g_{11}	
1	0.6986	1.0000										
2	1.4029	0.7071	1.9841					. 1				
3	1.5963	1.0967	1.5963	1.0000								
4	1.6703	1.1926	2.3661	0.8419	1.9841							
5	1.7058	1.2296	2.5408	1.2296	1.7058	1.0000						
6	1.7254	1.2479	2.6064	1.3137	2.4758	0.8696	1.9841					
7	1.7372	1.2583	2.6381	1.3444	2.6381	1.2583	1.7372	1.000				
8	1.7451	1.2647	2.6564	1.3590	2.6964	1.3389	2.5093	0.8796	1.9841			
9	1.7504	1.2690	2.6678	1.3673	2.7239	1.3673	2.6678	1.2690	1.7504	1.0000		
10	1.7543	1.2721	2.6754	1.3725	2.7392	1.3806	2.7231	1.3485	2.5239	0.8842	1.9841	
						(1	n this	case,	ω_c is a	at –0.5	JdB)	

9

Dr. J. E. Rayas-Sánchez

(D. M. Pozar, Microwave Engineering, Wiley, 2005) 18

(Assuming $g_0 = 1$ and $\omega_c = 1$)												
		3.0 dB Ripple										
Ν	g_1	g_2	g_3	g_4	g_5	g_6	<i>g</i> ₇	g_8	g_9	g_{10}	g_{11}	
1	1.9953	1.0000										
2	3.1013	0.5339	5.8095									
3	3.3487	0.7117	3.3487	1.0000								
4	3.4389	0.7483	4.3471	0.5920	5.8095						·	
5	3.4817	0.7618	4.5381	0.7618	3.4817	1.0000						
6	3.5045	0.7685	4.6061	0.7929	4.4641	0.6033	5.8095					
7	3.5182	0.7723	4.6386	0.8039	4.6386	0.7723	3.5182	1.0000				
8	3.5277	0.7745	4.6575	0.8089	4.6990	0.8018	4.4990	0.6073	5.8095			
9	3.5340	0.7760	4.6692	0.8118	4.7272	0.8118	4.6692	0.7760	3.5340	1.0000		
10	3.5384	0.7771	4.6768	0.8136	4.7425	0.8164	4.7260	0.8051	4.5142	0.6091	5.809	

Dr. J. E. Rayas-Sánchez

(D. M. Pozar, Microwave Engineering, Wiley, 2005) 19

20

De-Normalized Element Values L-P Prototypes

The final element values for a low-pass prototype are obtained from:

$$L_{k} = \frac{R_{0}g_{k}}{\omega_{c}} \qquad \leftarrow g_{k} = (\omega_{c}L_{k})/R_{0}$$
$$C_{k} = \frac{g_{k}}{R_{0}\omega_{c}} \qquad \leftarrow g_{k} = (\omega_{c}C_{k})R_{0}$$

 $R_{L} = \begin{cases} R_{0} / g_{N+1} & \text{if } g_{N+1} \text{ corresponds to a load conductance} \\ R_{0} g_{N+1} & \text{if } g_{N+1} \text{ corresponds to a load resistance} \end{cases}$

 R_0 is the actual source resistance = reference impedance Z_0

Example: Low-Pass Filter Prototype

Design a low-pass filter with the following specifications:

- Cut-off frequency at 3 GHz
- For a 75-Ω system
- Minimum attenuation of 20 dB at 5 GHz
- Butterworth filtering profile
- Use a series voltage source topology

13