Dr. J. E. Rayas-Sánchez

LOSSLESS MICROSTRIP LINE

Consider the microstrip line shown to the left. A dielectric substrate with thickness H = 0.794 mm and relative dielectric constant $\varepsilon_r = 2.2$ is used. A width W = 2.45 mm is used to achieve a 50- Ω line. The microstrip length is L = 27.2 mm.

Both metallic and dielectric losses are neglected. Metals are considered infinitesimally thin.

This microstrip line is used in [1] and reported in [2] with small variations.

Create a Sonnet project using the following setup:

Parameters related to Sonnet box: $y_{gap} = 2W = 4.9 \text{ mm} \approx 6.2H$ $H_{air} = 5H = 3.97 \text{ mm}$

Bottom and top cover: lossless metal.

Initial resolution (cell sizes): $C_x = W/2 = 1.225 \text{ mm}$ $C_y = W/2 = 1.225 \text{ mm}$

Initial length $L = 22C_x = 11W = 26.95$ mm (approximating the actual length with the selected resolution).

Sonnet box size: *L* by $(W + 2y_{gap})$

Sonnet geometry:

Sonnet setup:

Estimate memory and box resonances:

Estimated memory: 2 MB Subsection total: 68

No box resonances predicted below or within the specified frequency sweep.

Timing Info:

Errors/Warnings

Post-Analysis: Total time for 11 frequencies: 1 second. Sonnet Warning EG2530: Potential problem with box parameter. The Y cell size (1.225 mm) is greater than 1/20 wavelength (1.18503 mm) at 10 GHz. You must decrease the cell size or reduce the required number of subsections per wavelength to resolve this conflict.

Post-Analysis: Errors detected: 0 Warnings detected: 2.

Sonnet responses:

Increasing resolution (decreasing cell sizes): $C_x = W/4 = 0.6125 \text{ mm}$ $C_y = W/4 = 0.6125 \text{ mm}$

Timing Info:

Post-Analysis: Total time for 11 frequencies: 3 seconds.

Sonnet responses:

Estimate memory:

Estimated memory:	3	MB
Subsection total:	31	L2

Errors/Warnings

Post-Analysis: Errors detected: 0

Warnings detected: 0.

It is seen that by increasing the resolution, the level of reflection $|S_{11}|$ becomes closer to zero, and the level of transmission $|S_{21}|$ gets closer to one, as expected.

For very accurate results in Sonnet, it is more important to have small cell size the transversal direction (C_y) than in the longitudinal direction (C_x) . This means that we can use a very small C_y , and a $C_x = kC_y$, with k > 1. This allows having accurate results with lower computational cost.

For this microstrip line, a better way to define resolution would be:

 $C_y = W/4 = 0.6125 \text{ mm}$

 $C_x = L/\text{round}(L/(1.5C_y)) = 0.9066666667 \text{ mm}$

This value of C_x allows implementing L with its exact value:

Sizes	×	Y		Top Metal
Cell Size	.906666666666667	0.6125	🗆 Lock	Lossless
Box Size	27.2	12.25	🗆 Lock	Bottom Metal
Num. Cells	30 💌	20	🗌 🗆 Lock	Lossless 💌
	Cell Size	e Calculator		Symmetry
	Current Units:	mm		Estimate Memory

Estimate memory:

Estimated memory:	3 MB
Subsection total:	214

Timing Info:

Post-Analysis: Total time for 11 frequencies: 2 seconds.

Sonnet responses:

Errors/Warnings

Post-Analysis: Errors detected: 0

Warnings detected: 0.

J. E. Rayas-Sánchez and Z. Brito-Brito, "Optimal configuration of lumped ports in COMSOL for non-resonant planar structures," Internal Report CAECAS-12-11-R, ITESO, Tlaquepaque, Mexico, Jun. 2012.

^[2] D. M. Sheen, S. M. Ali, M. D. Abouzahra and J. A. Kong, "Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits," *IEEE Trans. Microwave Theory Tech.*, vol. 38, pp. 849-857, July 1990.