SIMULATION EXERCISES WITH SONNET

Dr. J. E. Rayas-Sánchez

Lossless Microstrip Line

Create a Sonnet project using the following setup:
Parameters related to Sonnet box:
$y_{\text {gap }}=2 W=4.9 \mathrm{~mm} \approx 6.2 \mathrm{H}$
$H_{\text {air }}=5 H=3.97 \mathrm{~mm}$

Bottom and top cover: lossless metal.
Initial resolution (cell sizes):
$C_{x}=W / 2=1.225 \mathrm{~mm}$
$C_{y}=W / 2=1.225 \mathrm{~mm}$
Initial length $L=22 C_{x}=11 \mathrm{~W}=26.95 \mathrm{~mm}$ (approximating the actual length with the selected resolution).

Sonnet box size: L by ($W+2 y_{\text {gap }}$)

Sonnet geometry:

Sonnet setup:

Estimate memory and box resonances:
Estimated memory: 2 MB
Subsection total: 68

No box resonances predicted below or within the specified frequency sweep.

Timing Info:

Post-Analysis:
Total time for 11 frequencies: 1 second.

Errors/Warnings

Sonnet Warning EG2530:
Potential problem with box parameter. The Y cell size $(1.225 \mathrm{~mm})$ is greater than $1 / 20$ wavelength (1.18503 mm) at 10 GHz . You must decrease the cell size or reduce the required number of subsections per wavelength to resolve this conflict.

Post-Analysis:
Errors detected: 0 Warnings detected: 2.

Sonnet responses:

Increasing resolution (decreasing cell sizes):
$C_{x}=W / 4=0.6125 \mathrm{~mm}$
$C_{y}=W / 4=0.6125 \mathrm{~mm}$

Timing Info:

Post-Analysis:
Total time for 11 frequencies: 3 seconds.
Sonnet responses:

Estimate memory:
Estimated memory: 3 MB
Subsection total: 312
Errors/Warnings
Post-Analysis:
Errors detected: 0 Warnings detected: 0.

It is seen that by increasing the resolution, the level of reflection $\left|\mathrm{S}_{11}\right|$ becomes closer to zero, and the level of transmission $\left|\mathrm{S}_{21}\right|$ gets closer to one, as expected.

For very accurate results in Sonnet, it is more important to have small cell size the transversal direction $\left(C_{y}\right)$ than in the longitudinal direction $\left(C_{x}\right)$. This means that we can use a very small C_{y}, and a $C_{x}=k C_{y}$, with $k>1$. This allows having accurate results with lower computational cost.
For this microstrip line, a better way to define resolution would be:
$C_{y}=W / 4=0.6125 \mathrm{~mm}$
$C_{x}=L / \operatorname{round}\left(L /\left(1.5 C_{y}\right)\right)=0.906666667 \mathrm{~mm}$
This value of C_{X} allows implementing L with its exact value:

Timing Info:
Post-Analysis:
Total time for 11 frequencies: 2 seconds.
Sonnet responses:

Estimate memory:
Estimated memory: 3 MB

Subsection total: 214

Errors/Warnings

Post-Analysis:
Errors detected: 0 Warnings detected: 0.

[^0]
[^0]: [1] J. E. Rayas-Sánchez and Z. Brito-Brito, "Optimal configuration of lumped ports in COMSOL for non-resonant planar structures," Internal Report CAECAS-12-11-R, ITESO, Tlaquepaque, Mexico, Jun. 2012.
 [2] D. M. Sheen, S. M. Ali, M. D. Abouzahra and J. A. Kong, "Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits," IEEE Trans. Microwave Theory Tech., vol. 38, pp. 849-857, July 1990.

