MULTI-SECTION IMPEDANCE TRANSFORMERS - ADS

Dr. J. E. Rayas-Sánchez

FOUR-SECTION 3:1 BUTTERWORTH IMPEDANCE TRANSFORMER

Problem

Design a four-section Butterworth impedance transformer to match at 5 GHz a load impedance $Z_L = 150$ Ω to a transmission line with characteristic impedance $Z_0 = 50 \Omega$. Calculate the theoretical fractional bandwidth for a maximum reflection of -40 dB. Calculate the corresponding lengths of the four sections of the impedance transformer, assuming an effective dielectric constant $\varepsilon_e = 3.38$.

Solution

We have N = 4, $Z_L = 150 \Omega$, $Z_0 = 50 \Omega$, $\Gamma_m = 0.01 = -40 \text{ dB}$, and $f_0 = 5 \text{ GHz}$.

Using Table 5.1 (Binomial Transformer Design, [1]) for
$$N = 4$$
 and $T = Z_L/Z_0 = 3$:
 $Z_1/Z_0 = 1.0718$
 $Z_2/Z_0 = 1.4105$
 $Z_3/Z_0 = 2.1269$
 $Z_4/Z_0 = 2.7990$

Since $Z_0 = 50 \Omega$, then,

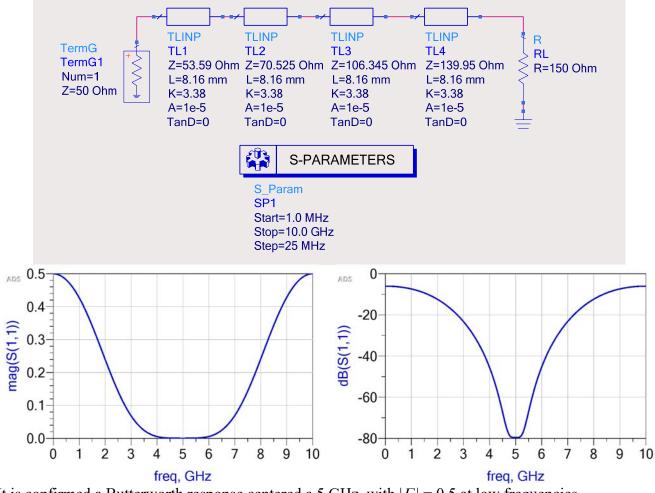
$$Z_1 = 53.5900 \Omega$$
$$Z_2 = 70.5250 \Omega$$
$$Z_3 = 106.3450 \Omega$$
$$Z_4 = 139.9500 \Omega$$

Since N = 4, $Z_L = 150 \Omega$, $Z_0 = 50 \Omega$,

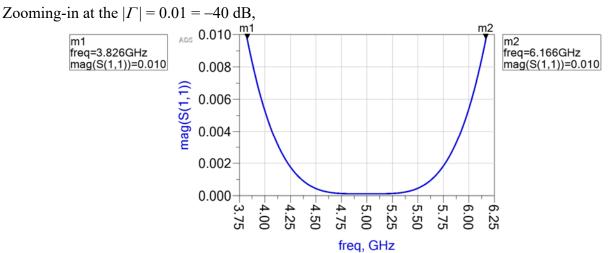
$$\Gamma = \frac{Z_{\rm L} - Z_0}{Z_{\rm L} + Z_0} = +0.5 = -6.02 \, \text{dB}, \ A = 2^{-N-1} \left| \ln(T) \right| = 0.0343.$$

The expected relative bandwidth for a maximum reflection $\Gamma_m = 0.01 = -40 \text{ dB}$ is

$$\frac{\Delta f}{f_0} = 2 - \frac{4}{\pi} \cos^{-1} \left[\frac{1}{2} \left(\frac{\Gamma_{\rm m}}{A} \right)^{1/N} \right] = 47.89\%$$


Centering the impedance transformer at $f_0 = 5$ GHz, then the expected bandwidth is $\Delta f = 2.39$ GHz. Since $\varepsilon_e = 3.38$,

$$\lambda_0 = \frac{v_p}{f_0} = \frac{c}{f_0 \sqrt{\varepsilon_e}} = 3.26 \text{ cm}; \ l = \frac{\lambda_0}{4} = 8.1589 \text{ mm}$$


Dr. J. E. Rayas-Sánchez

1

Implementation in ADS with Ideal Transmission Lines

It is confirmed a Butterworth response centered a 5 GHz, with $|\Gamma| = 0.5$ at low frequencies.

It is seen that the actual bandwidth $\Delta f = (6.166 - 3.826)$ GHz = 2.34 GHz at $\Gamma_m = 0.01$ is very close to the expected bandwidth (2.39 GHz).

Multi-Section Impedance Transformers - ADS

^[1] D. M. Pozar, Microwave Engineering. Amherst, MA: Wiley, 1998.