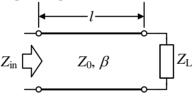
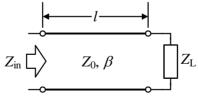
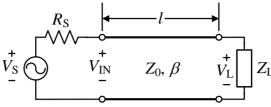

FUNDAMENTAL TRANSMISSION LINE THEORY


Dr. J. E. Rayas-Sánchez February 13, 2020

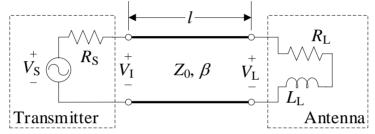
PROBLEMS


- 1. A lossy transmission line has the following per-unit length parameters: L = 289.05 nH/m, C = 115.62 pF/m, $R = 6.3 \Omega/m$, and G = 5 mS/m. For simplicity, it is assumed that these four parameters are frequency-independent. a) Calculate the characteristic impedance of the line, Z_0 , at 10 MHz and 100 MHz; b) Make 3 plots versus frequency, from 10 MHz to 10 GHz, of $|Z_0|$, α (attenuation constant) and β (propagation constant).
- 2. The transmission line illustrated below uses the same per-unit length parameters as in the previous problem. The load impedance Z_L consists of an 80- Ω resistor in series with a 10-nH inductor. Calculate the input impedance of the transmission line Z_{in} at 100 MHz, at the following distances from the load: a) l = 1 cm, b) l = 10 cm, and c) l = 1 m.

3. Solve previous problem but now neglecting losses.

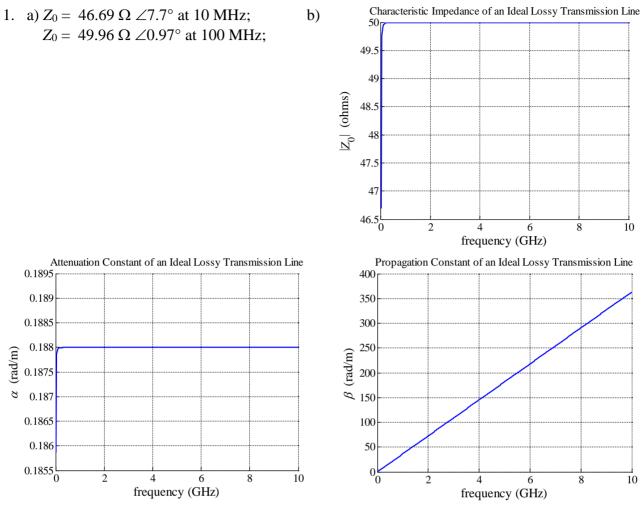


4. For the following lossless transmission line circuit, calculate the reflection coefficient at the load, Γ , the SWR on the line, and the input impedance, Z_{in} , at a at a distance *l* from the load. Assume $Z_0 = 50$ Ω , $Z_L = 40 + j20 \Omega$, and $l =: a) \lambda/4$; b) 0.35λ .



- 5. A lossless transmission line is connected to a $R_L = 75 \Omega$. a) If the measured SWR at the load is 2.2, find the two possible values for Z_0 . b) What is the value of the SWR when measured at a distance $l = 0.3\lambda$ away from the load?
- 6. A coaxial line has a characteristic impedance $Z_0 = 75 \Omega$, a physical length l = 2.5 m, and is filled with a dielectric whose $\varepsilon_r = 2.56$. If it is operating at 5 GHz and is connected to a load impedance $Z_L = 37.5 + j75 \Omega$, calculate the reflection coefficient at the load, Γ , the reflection coefficient at the input, $\Gamma_{l=2.5m}$, the SWR on the line, and the impedance at the input of the coaxial line, Z_{in} . Use c = 0.3 Gm/s.

7. The following transmission line circuit has $V_S = 15$ Vrms, $R_S = 75 \Omega$, $Z_0 = 75\Omega$, $Z_L = 55 - j30 \Omega$ at the operating frequency. Calculate the average power delivered to the load if: a) $l = \lambda/4$; and b) $l = 0.3\lambda$.



8. A 50- Ω radio transmitter is connected to an antenna through a 50- Ω coaxial line. The antenna can be represented by a resistor $R_{\rm L} = 70 \ \Omega$ in series with an inductor $L_{\rm L} = 5 \ \text{nH}$ when operating at 3 GHz. If the transmitter can delivered 25 W when connected to a matched load, a) What is the value of the equivalent source voltage, $V_{\rm S}$?, b) how much power is delivered to the antenna at 3 GHz?

9. A lossless transmission line (TL) has a characteristic impedance $Z_0 = 50 \ \Omega$ and uses an effective permittivity $\varepsilon_e = 3.8$. If a load impedance $Z_L = 500 \ \Omega$ is connected to the transmission line, calculate the magnitude of the reflection coefficient at the load, $|\Gamma|$, at the following frequencies: a) 3 GHz, b) 3 GHz + 150 MHz, and c) 3 GHz - 150 MHz. If a quarter-wave transformer (QWT) is inserted between the TL and Z_L to achieve a perfect match at 3 GHz, calculate: d) its characteristic impedance Z_T , and e) its physical length l_T . Finally, calculate the magnitude of the reflection coefficient at the following frequencies: f) 3 GHz + 150 MHz, and h) 3 GHz - 150 MHz.

SOLUTIONS

- 2. a) $Z_{in} = 80.38 \ \Omega \ \angle 2.43^\circ$; b) $Z_{in} = 72.35 \ \Omega \ \angle -14.13^\circ$; c) $Z_{in} = 61.52 \ \Omega \ \angle -13.08^\circ$. Notice that $Z_L = 80.25 \ \Omega \ \angle 4.49^\circ$ (when the transmission line is electrically very short, $Z_{in} \approx Z_L$).
- 3. a) $Z_{in} = 80.64 \ \Omega \ \angle 2.44^{\circ}$; b) $Z_{in} = 74.26 \ \Omega \ \angle -15.02^{\circ}$; c) $Z_{in} = 68.39 \ \Omega \ \angle -20.09^{\circ}$.
- 4. $\Gamma = 0.2425 \angle 104.04^{\circ}$ and SWR = 1.64 in both cases. a) $Z_{in} = 55.90 \ \Omega \angle -26.56^{\circ}$; b) $Z_{in} = 33.19 \ \Omega \angle -15.29^{\circ}$.
- 5. a) $Z_{01} = 165 \Omega$, $Z_{02} = 34.09 \Omega$. b) Same value (SWR = 2.2) because the transmission line is lossless.
- 6. $\Gamma = 0.62 \angle 82.87^{\circ}$, $\Gamma_l = 0.62 \angle -37.12^{\circ}$, SWR = 4.2656, and $Z_{in} = 183.70 \Omega \angle -50.58^{\circ}$.
- 7. a) $P_{\text{avg}} = 695.22 \text{ mW}$; b) $P_{\text{avg}} = 695.22 \text{ mW}$ (same value because the transmission line is lossless and $R_{\text{S}} = Z_0$).
- 8. a) $V_{\rm S} = 100$ V; b) $P_{\rm avg} = 15.03$ W.
- 9. a), b), c) $|\Gamma| = 0.8182$ at all frequencies; d) $Z_T = 158.114 \Omega$; e) $l_T = 12.825 \text{ mm}$; f) $|\Gamma| = 0$ at f = 3 GHz; g) $|\Gamma| = 0.11096$ at f = 3 GHz + 150 MHz; and h) $|\Gamma| = 0.11096$ at f = 3 GHz 150 MHz.