

Electronics II (02 SE048)

Lab Experiment 3: Feedback and Stability

Objectives

The objectives of this experiment are:

- a) to reinforce the application of the feedback analysis technique for estimating the performance of practical feedback amplifiers
- b) to compare the accuracy of the feedback analysis technique with respect to direct analysis as well as to full circuit simulation
- c) to practice feedback amplifiers analysis using simulation software.

Components and Instrumentation

A circuit simulation software: WinSpice, Electronic Work Bench, OrCad, or something similar.

Theoretical Procedure

For the feedback amplifier shown in Fig. 1,

- 1. Calculate the DC output voltage V_o , assuming that the DC component of the source voltage v_s is zero. Fill in the second column of Table I.
- 2. Direct analysis of the feedback amplifier:
 - a. Draw a low-frequency equivalent circuit for the whole amplifier
 - b. Analize the equivalent circuit obtained in the previous step and derive its voltage gain v_o/v_s and its input impedance v_s/i_s . Fill in the second column of Table II.
- 3. Analysis of the amplifier using feedback concepts:
 - a. What kind of feedback is the original amplifier using? (Series-Shunt, Series-Series, etc.)
 - b. Calculate the transfer function of the feedback network *B*
 - c. Assuming that the amount of feedback is large, estimate the low-frequency current gain i_o/i_s , the input impedance v_s/i_s , and the voltage gain v_o/v_s . Fill in the second column of Table III.
 - d. Calculate the transfer function of the the basic amplifier *A*' without feedback, but taking into account the loading of the feedback network
 - e. Calculate the input impedance R_i of the amplifier without feedback, but taking into

Fig. 1. Feedback amplifier: $R_S = 1K\Omega$, $R_F = 10K\Omega$, $R_E = 100\Omega$, $R_L = 100\Omega$, $V_{cc} = 18V$, I = 1mA, Q_1 , Q_2 : 2N3904.

account the loading of the feedback network

f. Re-calculate the current gain i_o/i_s , the input impedance v_s/i_s , and the voltage gain v_o/v_s using the information obtained in the previous steps b, d and e. Fill in the second column of Table IV.

Simulation Procedure

Using the selected software, enter to the simulator the circuit shown in Fig. 1. Make sure the BJTs are using the model of a 2N3904.

- 4. Perform transient analysis considering a sinusoidal voltage source of 100 mV of amplitude and 1KHz. Plot the input voltage v_s and the output voltage v_o , from 0 to 5 ms. Plot the output voltage v_o from 0 to 5 ms. From these plots, what is the voltage gain at 1KHz?, what is the DC output voltage V_o ?
- 5. Perform AC analysis from 10Hz to 900MHz. Plot the $|v_o/v_s|$, and $|v_o/v_s|$ in dB. Plot the input impedance $|v_s/i_s|$. From these plots, what is the voltage gain at low and mid frequencies? What is the cutoff frequency f_H ?, what is the amplifier's bandwidth?
- 6. Create and fill in four tables with the following entries:

Г	al	hl	le	I
I	a		U	T.

Parameter	Estimated	Simulated	Error (%)
V_O (DC value)			

Table II

Parameter	Estimated by direct calculation	Simulated	Error (%)
$ v_o/v_s $ (low frequencies)			
$ v_s/i_s $ (low frequencies)			

Table III

Parameter	Estimated assuming <i>AB</i> >> 1	Simulated	Error (%)
$ v_o/v_s $ (low frequencies)			
$ v_s/i_s $ (low frequencies)			

Table IV

Parameter	Estimated by calculating A' and B	Simulated	Error (%)
$ v_o/v_s $ (low frequencies)			
$ v_s/i_s $ (low frequencies)			

Report

Write a report including all the theoretical and simulation procedures as well as your conclusions.

Deadline and Assessment

The deadline for submitting the report is on Monday November 17, 2003. The report can be written either in English or in Spanish.

This lab experiment can be realized in teams of up to 3 students. The evaluation of the report will be as follows:

Quality of the report	30%
Accuracy of the theoretical analysis	30%
Simulation procedures	40%

If the report is written in acceptable English, an extra 10% can be granted.