* ------ * DIODES * ------ * Quasi Ideal Diode .model ideal_diode D (Is=1pA n=0.01) * Generic Diode (1mA@0.7V) .model 1mA_diode D (Is=100pA n=1.679) * (Sedra-Smith) .model D1N4148 D (Is=0.1pA Rs=16 CJO=2p Tt=12n Bv=100 Ibv=0.1p) * 1N4004 - 1A 400V General Purpose Rectifier * Fairchild (now National Semiconductors) .MODEL 1N4004 D (IS=3.699E-09 RS=1.756E-02 N=1.774 + XTI=3.0 EG=1.110 CJO=1.732E-11 M=0.3353 + VJ=0.3905 FC=0.5 BV=400 IBV=1.0E-03) * 1N4007 - 1A 1000V General Purpose Rectifier * Fairchild (now National Semiconductors) .MODEL 1N4007 D + IS = 3.872E-09 + RS = 1.66E-02 + N = 1.776 + XTI = 3.0 + EG = 1.110 + CJO = 1.519E-11 + M = 0.3554 + VJ = 0.5928 + FC = 0.5 + ISR = 1.356E-09 + NR = 2.152 + BV = 1000.0 + IBV = 1.0E-03 * 1N4148 - High Conductance Fast Diode * Fairchild (now National Semiconductors) .model D1N4148 D(Is=5.84n N=1.94 Rs=.7017 Ikf=44.17m + Xti=3 Eg=1.11 Cjo=.95p M=.55 Vj=.75 Fc=.5 + Isr=11.07n Nr=2.088 Bv=100 Ibv=100u Tt=11.07n) * ------------ * ZENER DIODES * ------------ * zener diode subcircuit (Sedra-Smith) .subckt zener_diode 1 2 * connections: | | * anode | * cathode Dforward 1 2 1mA_diode Dreverse 2 4 ideal_diode Vz0 4 3 DC 4.9V Rz 1 3 10 * diode model statements .model 1mA_diode D (Is=100pA n=1.679 ) .model ideal_diode D (Is=100pA n=0.01 ) .ends zener_diode *------------------------------------------------------------------------------- * Library of diode model parameters * * This is a reduced version of PSpice's diode model library. * You are welcome to make as many copies of it as you find convenient. * * The parameters in this model library were derived from the data sheets for * each part. Most parts were characterized using the Parts option. * Devices can also be characterized without Parts as follows: * IS nominal leakage current * RS for zener diodes: nominal small-signal impedance * at specified operating current * IB for zener diodes: set to nominal leakage current * IBV for zener diodes: at specified operating current * IBV is adjusted to give the rated zener voltage * * *** Zener Diodes *** * * "A" suffix zeners have the same parameters (e.g., 1N750A has the same * parameters as 1N750) * * .model D1N750 D(Is=880.5E-18 Rs=.25 Ikf=0 N=1 Xti=3 Eg=1.11 Cjo=175p M=.5516 + Vj=.75 Fc=.5 Isr=1.859n Nr=2 Bv=4.7 Ibv=20.245m Nbv=1.6989 + Ibvl=1.9556m Nbvl=14.976 Tbv1=-21.277u) * Motorola pid=1N750 case=DO-35 * 89-9-18 gjg * Vz = 4.7 @ 20mA, Zz = 300 @ 1mA, Zz = 12.5 @ 5mA, Zz =2.6 @ 20mA * ------------------- * BIPOLAR TRANSISTORS * ------------------- * Quasi ideal transistors .model npn_ideal npn (Is=1.8fA Bf=150 VAf=300V) .model pnp_ideal pnp (Is=1.8fA Bf=150 VAf=300V) * 2N2222 .MODEL 2N2222 NPN +(IS=3.108E-15 XTI=3 EG=1.11 VAF=131.5 BF=217.5 + NE=1.541 ISE=190.7E-15 IKF=1.296 XTB=1.5 BR=6.18 + NC=2 ISC=0 IKR=0 RC=1 CJC=14.57E-12 VJC=.75 + MJC=.3333 FC=.5 CJE=26.08E-12 VJE=.75 MJE=.3333 + TR=51.35E-9 TF=451E-12 ITF=.1 VTF=10 XTF=2) * ZETEX 2N2222A Spice model - Last revision 9/12/92 .MODEL 2N2222A/ZTX NPN IS =3.0611E-14 NF =1.00124 BF =220 IKF=0.52 + VAF=104 ISE=7.5E-15 NE =1.41 NR =1.005 BR =4 IKR=0.24 + VAR=28 ISC=1.06525E-11 NC =1.3728 RB =0.13 RE =0.22 + RC =0.12 CJC=9.12E-12 MJC=0.3508 VJC=0.4089 + CJE=27.01E-12 TF =0.325E-9 TR =100E-9 .model 2N2222A NPN (Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=255.9 Ne=1.307 + Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1 + Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75 + Tr=46.91n Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10) .model 2N3904 NPN (Is=6.734f Xti=3 Eg=1.11 Vaf=74.03 Bf=416.4 Ne=1.259 + Ise=6.734f Ikf=66.78m Xtb=1.5 Br=.7371 Nc=2 Isc=0 Ikr=0 Rc=1 + Cjc=3.638p Mjc=.3085 Vjc=.75 Fc=.5 Cje=4.493p Mje=.2593 Vje=.75 + Tr=239.5n Tf=301.2p Itf=.4 Vtf=4 Xtf=2 Rb=10) .model 2N3904F NPN(Is=6.734f Xti=3 Eg=1.11 Vaf=74.03 Bf=416.4 Ne=1.259 + Ise=6.734f Ikf=66.78m Xtb=1.5 Br=.7371 Nc=2 Isc=0 Ikr=0 Rc=1 + Cjc=3.638p Mjc=.3085 Vjc=.75 Fc=.5 Cje=4.493p Mje=.2593 Vje=.75 + Tr=239.5n Tf=301.2p Itf=.4 Vtf=4 Xtf=2 Rb=10) * Fairchild pid=23 case=TO92 * 88-09-08 bam creation .MODEL 2N3906 PNP(Is=1.41f Xti=3 Eg=1.11 Vaf=18.7 + Bf=180.7 Ne=1.5 Ise=0 Ikf=80m Xtb=1.5 Br=4.977 Nc=2 + Isc=0 Ikr=0 Rc=2.5 Cjc=9.728p Mjc=.5776 Vjc=.75 Fc=.5 + Cje=8.063p Mje=.3677 Vje=.75 Tr=33.42n Tf=179.3p + Itf=.4 Vtf=4 Xtf=6 Rb=10) *ZETEX 2N6727 Spice model Last revision 23/1/91 .MODEL Q2N6727_ZTX PNP (IS =2.715E-13 BF =170 VAF=70 NF =1.004 IKF=2.75 ISE=1E-13 +NE =1.535 BR =23 VAR=40 NR =1.005 IKR=.55 ISC=5.15E-14 NC =1.13 RB =.07 +RE =.065 RC =.085 CJE=360E-12 TF =.94E-9 CJC=90E-12 TR =60E-9 VJC=.705 +MJC=.46) * ------------------ * MOSFET TRANSISTORS * ------------------ * EMOSFET Basic Models * Level 1: Shichman-Hodges model * Level 2: Vladimirescu-Liu model * KP: Transconductance parameter, KP = miu*Cox * VTO: Threshold voltage, Vt * LAMBDA: Channel-length modulation factor (inv of VA) * GAMMA: Body effect coefficient .MODEL n_emosfet NMOS level=1 +(KP=60u VTO=+0.8V LAMBDA=0.0 GAMMA=0) .MODEL p_emosfet PMOS level=1 +(KP=30u VTO=-0.8V LAMBDA=0.0 GAMMA=0) * Level 1 CMOS Models as used in Razavi textbook (Table 2.1) .MODEL nmos_transistor_name nmos + level=1 vto=0.7 gamma=0.45 phi=0.9 + nsub=9e14 ld=0.08u uo=350 lambda=0.1 + tox=9e-9 pb=0.9 cj=0.56e-3 cjsw=0.35e-11 + mj=0.45 mjsw=0.2 cgdo=0.4e-9 js=1e-8 .MODEL pmos_transistor_name pmos + level=1 vto=-0.8 gamma=0.4 phi=0.8 + nsub=5e14 ld=0.09u uo=100 lambda=0.2 + tox=9e-9 pb=0.9 cj=0.94e-3 cjsw=0.32e-11 + mj=0.5 mjsw=0.3 cgdo=0.3e-9 js=0.5e-8 * 5um BNR CMOS transistor model statements .MODEL nmos_transistor nmos ( level=2 vto=1 nsub=1e16 tox=8.5e-8 uo=750 + cgso=4e-10 cgdo=4e-10 cgbo=2e-10 uexp=0.14 ucrit=5e4 utra=0 vmax=5e4 + rsh=15 cj=4e-4 mj=2 pb=0.7 cjsw=8e-10 mjsw=2 js=1e-6 xj=1u ld=0.7u ) .MODEL pmos_transistor pmos ( level=2 vto=-1 nsub=2e15 tox=8.5e-8 uo=250 + cgso=4e-10 cgdo=4e-10 cgbo=2e-10 uexp=0.03 ucrit=1e4 utra=0 vmax=3e4 + rsh=75 cj=1.8e-4 mj=2 pb=0.7 cjsw=6e-10 mjsw=2 js=1e-6 xj=0.9u ld=0.6u ) * BNR 3um transistor model statements (level 3) .MODEL MN nmos level=3 vto=.7 kp=4.e-05 gamma=1.1 phi=.6 + lambda=.01 rd=40 rs=40 pb=.7 cgso=3.e-10 cgdo=3.e-10 + cgbo=5.e-10 rsh=25 cj=.00044 mj=.5 cjsw=4.e-10 mjsw=.3 + js=1.e-05 tox=5.e-08 nsub=1.7e+16 nss=0 nfs=0 tpg=1 xj=6.e-07 + ld=3.5e-07 uo=775 vmax=100000 theta=.11 eta=.05 kappa=1 .MODEL MP pmos level=3 vto=-.8 kp=1.2e-05 gamma=.6 phi=.6 + lambda=.03 rd=100 rs=100 pb=.6 cgso=2.5e-10 cgdo=2.5e-10 + cgbo=5.e-10 rsh=80 cj=.00015 mj=.6 cjsw=4.e-10 mjsw=.6 + js=1.e-05 tox=5.e-08 nsub=5.e+15 nss=0 nfs=0 tpg=1 xj=5.e-07 + ld=2.5e-07 uo=250 vmax=70000 theta=.13 eta=.3 kappa=1 * Level 2 model nchan model for CN20, as used in LASI .MODEL CMOSN NMOS LEVEL=2 PHI=0.600000 TOX=4.3500E-08 XJ=0.200000U TPG=1 + VTO=0.8756 DELTA=8.5650E+00 LD=2.3950E-07 KP=4.5494E-05 + UO=573.1 UEXP=1.5920E-01 UCRIT=5.9160E+04 RSH=1.0310E+01 + GAMMA=0.4179 NSUB=3.3160E+15 NFS=8.1800E+12 VMAX=6.0280E+04 + LAMBDA=2.9330E-02 CGDO=2.8518E-10 CGSO=2.8518E-10 + CGBO=4.0921E-10 CJ=1.0375E-04 MJ=0.6604 CJSW=2.1694E-10 + MJSW=0.178543 PB=0.800000 * Weff = Wdrawn - Delta_W * The suggested Delta_W is -4.0460E-07 * Level 2 model pchan model for CN20, as used in LASI .MODEL CMOSP PMOS LEVEL=2 PHI=0.600000 TOX=4.3500E-08 XJ=0.200000U TPG=-1 + VTO=-0.8889 DELTA=4.8720E+00 LD=2.9230E-07 KP=1.5035E-05 + UO=189.4 UEXP=2.7910E-01 UCRIT=9.5670E+04 RSH=1.8180E+01 + GAMMA=0.7327 NSUB=1.0190E+16 NFS=6.1500E+12 VMAX=9.9990E+05 + LAMBDA=4.2290E-02 CGDO=3.4805E-10 CGSO=3.4805E-10 + CGBO=4.0305E-10 CJ=3.2456E-04 MJ=0.6044 CJSW=2.5430E-10 + MJSW=0.244194 PB=0.800000 * Weff = Wdrawn - Delta_W * The suggested Delta_W is -3.6560E-07 * BSIM model for n-channel CN20, as used in LASI .MODEL CMOSNB NMOS LEVEL=4 +VFB=-9.73820E-01, LVFB=3.67458E-01,WVFB=-4.72340E-02 +phi=7.46556E-01,lphi=-1.92454E-24, wphi=8.06093E-24 +k1=1.49134E+00,lk1=-4.98139E-01, wk1=2.78225E-01 +k2=3.15199E-01,lk2=-6.95350E-02,wk2=-1.40057E-01 +eta=-1.19300E-02, leta=5.44713E-02,weta=-2.67784E-02 +muz=5.98328E+02,dl=6.38067E-001,dw=1.35520E-001 +u0=5.27788E-02, lu0=4.85686E-02,wu0=-8.55329E-02 +u1=1.09730E-01, lu1=7.28376E-01,wu1=-4.22283E-01 +x2mz=7.18857E+00,lx2mz=-2.47335E+00, wx2mz=7.12327E+01 +x2e=-3.00000E-03,lx2e=-7.20276E-03,wx2e=-5.57093E-03 +x3e=3.71969E-04,lx3e=-3.16123E-03,wx3e=-3.80806E-03 +x2u0=1.30153E-03, lx2u0=3.81838E-04, wx2u0=2.53131E-02 +x2u1=-2.04836E-02, lx2u1=3.48053E-02, wx2u1=4.44747E-02 +mus=7.79064E+02, lmus=3.62270E+02,wmus=-2.71207E+02 +x2ms=-2.65485E+00, lx2ms=3.68637E+01, wx2ms=1.12899E+02 +x3ms=1.18139E+01, lx3ms=7.24951E+01,wx3ms=-5.25361E+01 +x3u1=2.12924E-02, lx3u1=5.85329E-02,wx3u1=-5.29634E-02 +tox=4.35000E-002, temp=2.70000E+01, vdd=5.00000E+00 +cgdo=3.79886E-010,cgso=3.79886E-010,cgbo=3.78415E-010 +xpart=1.00000E+000 +n0=1.00000E+000 ln0=0.00000E+000 wn0=0.00000E+000 +nb=0.00000E+000 lnb=0.00000E+000 wnb=0.00000E+000 +nd=0.00000E+000 lnd=0.00000E+000 wnd=0.00000E+000 +rsh=27.9 cj=1.037500e-04 cjsw=2.169400e-10 js=1.000000e-08 pb=0.8 +pbsw=0.8 mj=0.66036 mjsw=0.178543 wdf=0 dell=0 * BSIM model for p-channel CN20, as used in LASI .MODEL CMOSPB PMOS LEVEL=4 + vfb=-2.65334E-01, lvfb=6.50066E-02, wvfb=1.48093E-01 + phi=6.75823E-01,lphi=-1.61406E-24, wphi=8.03764E-24 + k1=5.68962E-01, lk1=3.88845E-02,wk1=-5.33948E-02 + k2=-5.52938E-02, lk2=1.17906E-01,wk2=-6.89149E-02 + eta=-1.51784E-02, leta=5.87976E-02,weta=-7.51570E-04 + muz=2.10669E+02,dl=8.44240E-001,dw=1.62551E-001 + u0=1.04713E-01, lu0=5.50950E-02,wu0=-7.56659E-02 + u1=1.46638E-02, lu1=2.13581E-01,wu1=-1.22509E-01 + x2mz=8.76354E+00,lx2mz=-3.64793E+00, wx2mz=4.30934E+00 + x2e=-2.13631E-03,lx2e=-2.94140E-03,wx2e=-2.48293E-03 + x3e=2.78813E-04,lx3e=-1.60711E-03,wx3e=-4.57237E-03 + x2u0=3.93706E-03,lx2u0=-5.66051E-04, wx2u0=5.69621E-04 + x2u1=1.07707E-04, lx2u1=8.85125E-03, wx2u1=1.71537E-03 + mus=2.06464E+02, lmus=1.39151E+02,wmus=-4.95671E+01 + x2ms=5.86401E+00, lx2ms=6.98887E+00, wx2ms=5.55782E+00 + x3ms=-2.03430E-01, lx3ms=1.16170E+01,wx3ms=-3.44342E+00 + x3u1=-1.17893E-02, lx3u1=5.72098E-04, wx3u1=8.29791E-03 + tox=4.35000E-002, temp=2.70000E+01, vdd=5.00000E+00 + cgdo=5.02635E-010,cgso=5.02635E-010,cgbo=3.85017E-010 + xpart=1.00000E+000 + n0=1.00000E+000,ln0=0.00000E+000,wn0=0.00000E+000 + nb=0.00000E+000,lnb=0.00000E+000,wnb=0.00000E+000 + nd=0.00000E+000,lnd=0.00000E+000,wnd=0.00000E+000 + rsh=54.7, cj=3.245600e-04, cjsw=2.543000e-10, js=1.000000e-08, pb=0.8 + pbsw=0.8, mj=0.60438, mjsw=0.244194, wdf=0, dell=0 * Level 3 SPICE model for CMOS14TB 0.5 um, as used in LASI .MODEL CMOSN5 NMOS LEVEL=3 PHI=0.700000 + TOX=9.6000E-09 XJ=0.200000U TPG=1 + VTO=0.7118 DELTA=2.3060E-01 LD=2.9830E-08 KP=1.8201E-04 + UO=506.0 THETA=1.9090E-01 RSH=1.8940E+01 GAMMA=0.6051 + NSUB=1.4270E+17 NFS=7.1500E+11 VMAX=2.4960E+05 ETA=2.5510E-02 + KAPPA=1.8530E-01 CGDO=9.0000E-11 CGSO=9.0000E-11 + CGBO=3.7295E-10 CJ=6.02E-04 MJ=0.805 CJSW=2.0E-11 + MJSW=0.761 PB=0.99 * Weff = Wdrawn - Delta_W * The suggested Delta_W is 3.5700E-07 * Level 4 (BSIM) SPICE model for CMOS14TB 0.5 um, as used in LASI .MODEL CMOSNB5 NMOS LEVEL=4 + vfb=-9.65360E-01 lvfb= 4.11254E-02 wvfb=-1.21737E-01 + phi= 9.02436E-01 lphi= 0.00000E+00 wphi= 0.00000E+00 + k1= 9.33674E-01 lk1= -8.15872E-02 wk1= 2.03526E-01 + k2= 7.39228E-02 lk2= 1.48295E-02 wk2= 5.89097E-02 + eta=-2.77969E-03 leta= 1.12296E-02 weta= 1.25263E-03 + muz= 4.71133E+02 dl= 1.57937E-001 dw= 4.09563E-001 + u0= 1.98427E-01 lu0= 1.54850E-01 wu0= -1.05429E-01 + u1= 3.39403E-02 lu1= 3.59469E-02 wu1= -5.00497E-03 + x2mz=1.25728E+01 lx2mz=-1.24115E+01 wx2mz=1.77657E+01 + x2e=-9.95217E-05 lx2e=-5.16949E-03 wx2e= 2.83253E-03 + x3e=-4.27269E-04 lx3e=-1.62632E-03 wx3e=-1.60797E-03 + x2u0=-9.02747E-04 lx2u0=-1.66946E-02 wx2u0=2.48458E-02 + x2u1=-7.29822E-04 lx2u1=2.38803E-03 wx2u1=-9.76918E-04 + mus=5.36631E+02 lmus=2.18647E+01 wmus=4.43373E+00 + x2ms=5.97403E+00 lx2ms=-7.67105E+00 wx2ms=2.19614E+01 + x3ms=7.60054E+00 lx3ms=4.73779E+00 wx3ms=2.59952E+00 + x3u1=1.75532E-02 lx3u1=-1.21628E-03 wx3u1=-5.95548E-04 + tox=9.60000E-003 temp=2.70000E+01 vdd=3.30000E+00 + cgdo=4.26077E-010 cgso=4.26077E-010 cgbo=4.01709E-010 + xpart=1.00000E+000 + n0=1.00000E+000 ln0=0.00000E+000 wn0=0.00000E+000 + nb=0.00000E+000 lnb=0.00000E+000 wnb=0.00000E+000 + nd=0.00000E+000 lnd=0.00000E+000 wnd=0.00000E+000 + rsh=2 cj=6.02e-04 cjsw=2.0e-11 js=1e-08 pb=0.99 + pbsw=0.99 mj=0.805 mjsw=0.761 wdf=0 dell=0 * Level 3 SPICE model for CMOS14TB 0.5 um, as used in LASI .MODEL CMOSP5 PMOS LEVEL=3 PHI=0.700000 + TOX=9.6000E-09 XJ=0.200000U TPG=-1 + VTO=-0.9016 DELTA=4.2020E-01 LD=4.3860E-08 KP=4.1582E-05 + UO=115.6 THETA=3.7990E-02 RSH=9.0910E-02 GAMMA=0.4496 + NSUB=7.8780E+16 NFS=6.4990E+11 VMAX=2.3130E+05 ETA=2.8580E-02 + KAPPA=9.9270E+00 CGDO=9.0000E-11 CGSO=9.0000E-11 + CGBO=3.6835E-10 CJ=9.34E-04 MJ=0.491 CJSW=2.41E-10 + MJSW=0.222 PB=0.90 * Weff = Wdrawn - Delta_W * The suggested Delta_W is 3.4860E-07 * Level 4 (BSIM) SPICE model for CMOS14TB 0.5 um, as used in LASI .MODEL CMOSPB5 PMOS LEVEL=4 + vfb=-2.80568E-01 lvfb=5.70163E-02 wvfb=-6.17493E-02 + phi=8.14689E-01 lphi=0.00000E+00 wphi=0.00000E+00 + k1=4.52973E-01 lk1=-9.19899E-02 wk1=1.20834E-01 + k2=-9.42157E-03 lk2=-2.25562E-03 wk2=3.13315E-02 + eta=-7.03956E-03 leta=1.92833E-02 weta=5.45445E-05 + muz=1.36047E+02 dl=1.85988E-001 dw=4.32366E-001 + u0=1.93813E-01 lu0=6.02231E-02 wu0=-4.90734E-02 + u1=8.52399E-03 lu1=2.60545E-02 wu1=-6.34371E-03 + x2mz=7.96258E+00 lx2mz=-2.15761E+00 wx2mz=2.30663E+00 + x2e=4.37912E-04 lx2e=-1.60046E-03 wx2e=-3.86750E-04 + x3e=-3.52725E-04 lx3e=-4.09096E-04 wx3e=-2.53471E-03 + x2u0=1.18873E-02 lx2u0=-4.81760E-03 wx2u0=8.80040E-03 + x2u1=2.26591E-03 lx2u1=7.96828E-04 wx2u1=-4.70527E-04 + mus=1.44421E+02 lmus=1.63665E+01 wmus=-7.31189E-01 + x2ms=8.18970E+00 lx2ms=-1.25158E+00 wx2ms=3.62233E+00 + x3ms=7.29640E-01 lx3ms=1.15206E+00 wx3ms=1.02833E+00 + x3u1=-3.51521E-03 lx3u1=-3.12374E-03 wx3u1=3.48134E-03 + tox=9.60000E-003 temp=2.70000E+01 vdd=3.30000E+00 + cgdo=5.01753E-010 cgso=5.01753E-010 cgbo=4.14187E-010 + xpart=1.00000E+000 + n0=1.00000E+000 ln0=0.00000E+000 wn0=0.00000E+000 + nb=0.00000E+000 lnb=0.00000E+000 wnb=0.00000E+000 + nd=0.00000E+000 lnd=0.00000E+000 wnd=0.00000E+000 + rsh=2.1 cj=9.34e-04 cjsw=2.41e-10 js=1e-08 pb=0.90 + pbsw=0.90 mj=0.491 mjsw=0.222 wdf=0 dell=0 * ---------------------- * OPERATIONAL AMPLIFIERS * ---------------------- * Subcircuit for a Quasi Ideal OpAmp .SUBCKT QuasiIdealOpAmp P N OUT Ri P N 1000MEGohms Ro I OUT 0.01ohms Eo I 0 P N 100E6 .ENDS * UA741 OPERATIONAL AMPLIFIER "MACROMODEL" SUBCIRCUIT * Texas Instruments * CREATED USING PARTS RELEASE 4.01 ON 07/05/89 AT 09:09 * (REV N/A) SUPPLY VOLTAGE: +/-15V * CONNECTIONS: NON-INVERTING INPUT * | INVERTING INPUT * | | POSITIVE POWER SUPPLY * | | | NEGATIVE POWER SUPPLY * | | | | OUTPUT * | | | | | .SUBCKT UA741 1 2 3 4 5 * C1 11 12 4.664E-12 C2 6 7 20.00E-12 DC 5 53 DX DE 54 5 DX DLP 90 91 DX DLN 92 90 DX DP 4 3 DX EGND 99 0 POLY(2) (3,0) (4,0) 0 .5 .5 FB 7 99 POLY(5) VB VC VE VLP VLN 0 10.61E6 -10E6 10E6 10E6 -10E6 GA 6 0 11 12 137.7E-6 GCM 0 6 10 99 2.574E-9 IEE 10 4 DC 10.16E-6 HLIM 90 0 VLIM 1K Q1 11 2 13 QX Q2 12 1 14 QX R2 6 9 100.0E3 RC1 3 11 7.957E3 RC2 3 12 7.957E3 RE1 13 10 2.740E3 RE2 14 10 2.740E3 REE 10 99 19.69E6 RO1 8 5 150 RO2 7 99 150 RP 3 4 18.11E3 VB 9 0 DC 0 VC 3 53 DC 2.600 VE 54 4 DC 2.600 VLIM 7 8 DC 0 VLP 91 0 DC 25 VLN 0 92 DC 25 .MODEL DX D(IS=800.0E-18) .MODEL QX NPN(IS=800.0E-18 BF=62.50) .ENDS * op-amp subcircuit .subckt uA741x 1 2 3 4 5 * connections: | | | | | * | | | | | * non-inverting input | | | | * inverting input | | | * positive power supply | | * negative power supply | * output * c1 11 12 8.661E-12 c2 6 7 30.00E-12 dc 5 53 dx de 54 5 dx dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0 10.61E6 -10E6 10E6 10E6 -10E6 ga 6 0 11 12 188.5E-6 gcm 0 6 10 99 5.961E-9 iee 10 4 dc 15.16E-6 hlim 90 0 vlim 1K q1 11 2 13 qx q2 12 1 14 qx r2 6 9 100.0E3 rc1 3 11 5.305E3 rc2 3 12 5.305E3 re1 13 10 1.836E3 re2 14 10 1.836E3 ree 10 99 13.19E6 ro1 8 5 50 ro2 7 99 100 rp 3 4 18.16E3 vb 9 0 dc 0 vc 3 53 dc 1 ve 54 4 dc 1 vlim 7 8 dc 0 vlp 91 0 dc 40 vln 0 92 dc 40 .model dx D(Is=800.0E-18 Rs=1) .model qx NPN(Is=800.0E-18 Bf=93.75) .ends uA741 * LM324 OPERATIONAL AMPLIFIER "MACROMODEL" SUBCIRCUIT * Texas Instruments * CREATED USING PARTS RELEASE 4.01 ON 09/08/89 AT 10:54 * (REV N/A) SUPPLY VOLTAGE: 5V * CONNECTIONS: NON-INVERTING INPUT * | INVERTING INPUT * | | POSITIVE POWER SUPPLY * | | | NEGATIVE POWER SUPPLY * | | | | OUTPUT * | | | | | .SUBCKT LM324 1 2 3 4 5 * C1 11 12 5.544E-12 C2 6 7 20.00E-12 DC 5 53 DX DE 54 5 DX DLP 90 91 DX DLN 92 90 DX DP 4 3 DX EGND 99 0 POLY(2) (3,0) (4,0) 0 .5 .5 FB 7 99 POLY(5) VB VC VE VLP VLN 0 15.91E6 -20E6 20E6 20E6 -20E6 GA 6 0 11 12 125.7E-6 GCM 0 6 10 99 7.067E-9 IEE 3 10 DC 10.04E-6 HLIM 90 0 VLIM 1K Q1 11 2 13 QX Q2 12 1 14 QX R2 6 9 100.0E3 RC1 4 11 7.957E3 RC2 4 12 7.957E3 RE1 13 10 2.773E3 RE2 14 10 2.773E3 REE 10 99 19.92E6 RO1 8 5 50 RO2 7 99 50 RP 3 4 30.31E3 VB 9 0 DC 0 VC 3 53 DC 2.100 VE 54 4 DC .6 VLIM 7 8 DC 0 VLP 91 0 DC 40 VLN 0 92 DC 40 .MODEL DX D(IS=800.0E-18) .MODEL QX PNP(IS=800.0E-18 BF=250) .ENDS *----------------------------------------------------------------------------- * Op-Amp LF411 * connections: non-inverting input * | inverting input * | | positive power supply * | | | negative power supply * | | | | output * | | | | | .subckt LF411 1 2 3 4 5 * c1 11 12 4.196E-12 c2 6 7 10.00E-12 css 10 99 1.333E-12 dc 5 53 dx de 54 5 dx dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0 31.83E6 -30E6 30E6 30E6 -30E6 ga 6 0 11 12 251.4E-6 gcm 0 6 10 99 2.514E-9 iss 10 4 dc 170.0E-6 hlim 90 0 vlim 1K j1 11 2 10 jx j2 12 1 10 jx r2 6 9 100.0E3 rd1 3 11 3.978E3 rd2 3 12 3.978E3 ro1 8 5 50 ro2 7 99 25 rp 3 4 15.00E3 rss 10 99 1.176E6 vb 9 0 dc 0 vc 3 53 dc 1.500 ve 54 4 dc 1.500 vlim 7 8 dc 0 vlp 91 0 dc 25 vln 0 92 dc 25 .model dx D(Is=800.0E-18 Rs=1m) .model jx NJF(Is=12.50E-12 Beta=743.3E-6 Vto=-1) .ends