SIMULATION EXERCISES WITH SPICE – PART 2 -

Dr. J. E. Rayas Sánchez

1. Write a SPICE netlist to obtain the output curves of a MOS transistor in common source configuration. Use an n-channel MOSFET with $W/L = 40 \mu \text{m}/2 \mu \text{m}$, $V_{TH} = 1.8 \text{V}$, $K_p = \mu_n C_{OX} = 150 \mu \text{A/V}^2$ (level 1 SPICE model). Vary v_{GS} from 0 to 5 volts with increments of 0.5V, and v_{DS} from 0 to 50 volts with increments of 0.1V.

a) Using $\lambda = 0$, you should get:

b) Using $\lambda = 0.01 \text{ V}^{-1}$, you should get:

c) Using $\lambda = 0.05 \text{ V}^{-1}$, you should get:

Notice the channel length modulation effects.

2. Obtain the large signal transfer function of the following Voltage Limiter, assuming $V_1 = 3V$, $V_2 = -3V$, $R_1 = R_2 = 10\Omega$, $R_L = 10K\Omega$ and ideal diodes. Vary V_I from -5V to 5V.

Apply a 5V, 1KHz, sinusoidal input signal and plot the output voltage from 0 to 4 ms, using a plotting time step of 1µs:

Obtain the spectrum of the input and output transient voltages using a SPICE Fourier command:

Now use diodes 1N4004 and repeat the analysis. Notice that the Total Harmonic Distortion at the output increased from THD=18.54% to THD=21.60%

Using again diodes 1N4004, increase the amplitude of the sinusoidal input voltage from 5V to 10V, and obtain again the Fourier components of the output voltage; notice that THD increases to 34.5%.