Dr. José Ernesto Rayas Sánchez

Most of the figures of this presentation were taken from Agilent Technologies Educator's Corner: 1999 RF Design and Measurement Seminar, David Ballo, Joe Civello, Ed Henicle, Sara Meszaros, Andy Potter, Boyd Shaw, My Le Truong

Electrical Size

Low frequencies

.

- wavelengths >> wire length
- current (I) travels down the wires easily for efficient power transmission
- measured voltage and current not dependent on position along the wire

High frequencies

- wavelength \approx or < length of transmission medium
- · need transmission lines for efficient power transmission
- matching to characteristic impedance (Z_0) is very important for low reflection and maximum power transfer
- · measured envelope voltage dependent on position along line

The Need of Transmission Line Theory

• For analog circuits:

If the physical length of the transmission media is larger 10% of the wavelength of the highest frequency of interest

• For digital circuits:

If the propagation time in the longest transmission path is larger than 10% of the fastest transition time

Common Transmission Media (cont.)

Practical interconnects have discontinuities and imperfections

From Lumped Model Image: Cascaded Lumped Model Image: Cascaded Lumped Model Image: Cascaded Lumped Model Image: Transmission Line Model Image: Cascaded Lumped Model

Dr. José Ernesto Rayas-Sánchez

Dr. José Ernesto Rayas-Sánchez

April 22, 2020

Transmission Line Equations

Time-Domain (Telegrapher Equations)

$$\frac{\partial v(z,t)}{\partial z} = -Ri(z,t) - L\frac{\partial i(z,t)}{\partial t}$$
$$\frac{\partial i(z,t)}{\partial z} = -Gv(z,t) - C\frac{\partial v(z,t)}{\partial t}$$

Telegrapher Equations in Frequency-Domain

$$\frac{dV(z)}{dz} = -(R + j\omega L)I(z)$$
$$\frac{dI(z)}{dz} = -(G + j\omega C)V(z)$$

April 22, 2020

Characteristic Impedance

• Characteristic impedance of the TL

$$Z_0 \equiv \frac{V_0^+}{I_0^+} = \frac{V_0^-}{-I_0^-}$$
$$Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$$

Dr. José Ernesto Rayas-Sánchez April 22, 2020

Loss Tangent of Typical Materials

Dielectric Material	Loss Tangent	Dielectric Constant
Ceramic (Alumina)	0.001	9.4
Glass-epoxy	0.03	4.0
Glass (Quartz)	0.00006	3.8
Polyimide	0.01	3.5
Silicon (100 Ω-cm)	0.51	11.8
Silicon (10 Ω-cm)	5.1	11.8
Teflon	0.00015	2.1
at 3GHz		

(A. Weisshaar, Tutorial on High-Speed Interconnects, IMS June 2004, Fort Worth, TX) Dr. J. E. Rayas Sánchez

34

Dr. José Ernesto Rayas-Sánchez April 22, 2020

Dr. José Ernesto Rayas-Sánchez

Dr. José Ernesto Rayas-Sánchez April 22, 2020

Dr. José Ernesto Rayas-Sánchez April 22, 2020

Reflection Parameters $\Gamma = \frac{V_{\text{reflected}}}{V_{\text{incident}}} = \rho \angle \Phi = \frac{Z_{\text{L}} - Z_{\text{O}}}{Z_{\text{L}} + Z_{\text{O}}}$ Reflection Coefficient ho = $|\Gamma|$ Return loss = -20 log(ρ), Standing Wave Ratio - E_{max} $SWR = \frac{E_{max}}{E_{min}} = \frac{1+\rho}{1-\rho}$ E_{min} No reflection Full reflection $(Z_L = open, short)$ $(Z_L = Z_0)$ ρ 0 1 $\infty \, dB$ RL $0 \, dB$ ∞ **SWR** 1 (Hewlett-Packard's RF Design and Measurement Seminar, 2000)₄₃ Dr. J. E. Rayas Sánchez

Dr. José Ernesto Rayas-Sánchez

Each element of matrix \mathbf{Z} is given by

$$Z_{ij} = \frac{V_i}{I_j}\Big|_{I_k=0 \text{ for } k\neq j}$$

Dr. J. E. Rayas Sánchez

Admittance Matrix Representation (Y) $V = \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_N \end{bmatrix} \quad I = \begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_N \end{bmatrix} \quad Y = \begin{bmatrix} Y_1 & Y_{12} & \dots & Y_{1N} \\ Y_{21} & Y_{22} & \dots & Y_{2N} \\ \vdots \\ Y_{N1} & Y_{N2} & \dots & Y_{NN} \end{bmatrix}$ Each element of matrix Y is given by $Y_{n} = \frac{I_i}{I_i}$

$$Y_{ij} = \frac{I_i}{V_j}\Big|_{V_k=0 \text{ for } k\neq j}$$

Meaning of the S-parameters (cont.)

- S_{11} : forward reflection coefficient (input match)
- S_{22} : reverse reflection coefficient (output match)
- S_{21} : forward transmission coefficient (gain or loss)
- S_{12} : reverse transmission coefficient (isolation)

$$S_{ii} \neq \Gamma_i \qquad S_{ii} = \frac{V_i^-}{V_i^+} \bigg|_{V_k^+ = 0 \text{ for } k \neq i} = \Gamma_i \bigg|_{V_k^+ = 0 \text{ for } k \neq i}$$
$$S_{ij} \neq T_{ji} \qquad S_{ij} = \frac{V_i^-}{V_i^+} = T_{ji} \bigg|_{V_k^+ = 0 \text{ for } k \neq i}$$

$$\neq T_{ji} \qquad S_{ij} = \frac{V_i}{V_j^+} \bigg|_{V_k^+ = 0 \text{ for } k \neq j} = T_{ji} \bigg|_{V_k^+ = 0 \text{ for } k \neq j}$$

Hybrid Microwave Integrated Circuits (cont.)

M. Pozar (1998), Microwave Engineering. Amherst, MA: John Wiley and Sons.

59

Dr. José Ernesto Rayas-Sánchez April 22, 2020

