Formulation of Circuit Equations

Dr. José Ernesto Rayas-Sánchez

Introduction

- A physical circuit is modeled by a number of linear and nonlinear circuit elements connected in a given configuration
- Its behavior is governed by two kinds of equations:
- Equations for describing the operation of each circuitelement (I-V relationship for each branch)
- Equations for describing how the circuit-elements are connected (topology)

Circuit Theory - EM Theory

- Voltages and currents cannot be uniquely defined for transmission lines that do not support transverse electromagnetic (TEM) waves
- Classic circuit theory is valid as a quasi-static approximation of general electromagnetic theory
- Kirchhoff's laws are still applicable at high frequencies provided that
- Distributed-circuit and radiation effects are modeled within circuit elements (they are treated as "black boxes")
- Voltages and currents are defined at the terminals of every circuit element

Oriented Graphs

- It is a graphical representation of the nodes and branches of a circuit
- Branches are oriented by means of an arrow
- A graph is connected if there is at least one path made of branches between every pair of nodes
- An oriented graph retains the topological information about a circuit, suppressing the information about the circuit elements

Formulation of Circuit Equations
Dr. José Ernesto Rayas-Sánchez
January 29, 2020

Two-Terminal Elements

Multi-Terminal Elements

Dr. J. E. Rayas-Sánchez

Multi-Port Elements

Notation

- Scalars: a, b, c
- Vectors: $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{V}$
- Matrices: $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$
- Handwriting...
- Identity matrix: I or $\mathbf{1}$
- Examples:

$$
a \in \mathfrak{R} \quad \boldsymbol{b} \in \mathfrak{R}^{n} \quad \boldsymbol{b}=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right] \quad \boldsymbol{C} \in \mathfrak{R}^{n \times m} \quad \boldsymbol{C}=\left[\begin{array}{ccc}
c_{11} & \ldots & c_{1 m} \\
\vdots & \ddots & \vdots \\
c_{n 1} & \ldots & c_{n m}
\end{array}\right]
$$

Formulation of Circuit Equations

Dr. José Ernesto Rayas-Sánchez
January 29, 2020

Incidence Matrix A

- It stores the topology information of the circuit
- If the circuit has $n+1$ nodes and b branches,

$$
\begin{gathered}
\boldsymbol{A} \in \mathfrak{R}^{n \times b} \\
a_{i j}= \begin{cases}1 & \text { if branch } j \text { leaves node } i \\
-1 & \text { if branch } j \text { enters node } i \\
0 & \text { if branch } j \text { does not touch node } i\end{cases}
\end{gathered}
$$

Kirchhoff's Current Law (KCL)

If \boldsymbol{I} is the vector of branch currents,

$$
\boldsymbol{I} \in \mathfrak{R}^{b \times 1} \quad \boldsymbol{I}=\left[\begin{array}{c}
I_{1} \\
I_{2} \\
\vdots \\
I_{b}
\end{array}\right]
$$

$$
A I=\mathbf{0}
$$

Kirchhoff's Voltage Law (KVL)

If \boldsymbol{V}_{n} is the vector of node voltages, and \boldsymbol{V}_{b} is the vector of branch voltages,

$$
\boldsymbol{V}_{n} \in \mathfrak{R}^{n \times 1} \quad \boldsymbol{V}_{b} \in \mathfrak{R}^{b \times 1} \quad \boldsymbol{V}_{n}=\left[\begin{array}{c}
V_{n 1} \\
V_{n 2} \\
\vdots \\
V_{n n}
\end{array}\right] \quad \boldsymbol{V}_{b}=\left[\begin{array}{c}
V_{b 1} \\
V_{b 2} \\
\vdots \\
V_{b b}
\end{array}\right]
$$

$$
\boldsymbol{A}^{\mathrm{T}} \boldsymbol{V}_{n}-\boldsymbol{V}_{b}=\mathbf{0}
$$

$$
\boldsymbol{V}_{b}=\boldsymbol{A}^{\mathrm{T}} \boldsymbol{V}_{n}
$$

Tableau Formulation

- $\boldsymbol{I}, \boldsymbol{V}_{b}$ and \boldsymbol{V}_{n} are taken as the unkowns
- For a circuit that corresponds to a connected graph with b branches and $n+1$ nodes, the number of unknowns is $2 b+n$
- Equations

$$
\boldsymbol{A} \boldsymbol{I}=\mathbf{0} \quad \boldsymbol{A}^{\top} \boldsymbol{V}_{n}-\boldsymbol{V}_{b}=\mathbf{0}
$$

provide $n+b$ linearly independent equations

- The rest of the equations (b) must be obtained from the circuit element definitions

Formulation of Circuit Equations

Dr. José Ernesto Rayas-Sánchez
January 29, 2020

Tableau Formulation (cont.)

General representation of a linear circuit element

$$
\left[\begin{array}{l}
\boldsymbol{Y}_{1} \\
\boldsymbol{K}_{2}
\end{array}\right] \boldsymbol{V}_{b}+\left[\begin{array}{l}
\boldsymbol{K}_{1} \\
\boldsymbol{Z}_{2}
\end{array}\right] \boldsymbol{I}=\left[\begin{array}{l}
\boldsymbol{W}_{1} \\
\boldsymbol{W}_{2}
\end{array}\right]
$$

where
\boldsymbol{Y}_{1} and \boldsymbol{Z}_{2} represent admittances and impedances, respectively;
\boldsymbol{K}_{1} and \boldsymbol{K}_{2} contain dimensionless constants;
and \boldsymbol{W}_{1} and \boldsymbol{W}_{2} include the independent current and voltage sources, as well as the influence of initial conditions on capacitors and inductors

Tableau Formulation (cont.)

Using a more compact notation,

$$
\boldsymbol{Y} \boldsymbol{V}_{b}+\mathbf{Z I}=\boldsymbol{W}
$$

where

$$
\begin{aligned}
& \boldsymbol{Y}=\left[\begin{array}{ll}
\boldsymbol{Y}_{1} & \boldsymbol{K}_{2}
\end{array}\right]^{\mathrm{T}}, \boldsymbol{Z}=\left[\begin{array}{ll}
\boldsymbol{K}_{1} & \boldsymbol{Z}_{2}
\end{array}\right]^{\mathrm{T}} \text { and } \boldsymbol{W}=\left[\begin{array}{ll}
\boldsymbol{W}_{1} & \boldsymbol{W}_{2}
\end{array}\right]^{\mathrm{T}} \\
& \boldsymbol{Y} \in \mathfrak{R}^{b \times b} \quad \boldsymbol{Z} \in \mathfrak{R}^{b \times b} \quad \boldsymbol{W} \in \mathfrak{R}^{b}
\end{aligned}
$$

Selecting $\boldsymbol{Y}, \mathbf{Z}$ and \boldsymbol{W} : Simple Elements

Element	Equation	\mathbf{Y}	\mathbf{Z}	\mathbf{W}
Resistor	$V-R I=0$	1	$-R$	0
Conductor	$G V-I=0$	G	-1	0
Capacitor	$s C V-I=C V_{0}$	$s C$	-1	$C V_{0}$
Inductor	$V-s L I=-L I_{0}$	1	$-s L$	$-L I_{0}$
Voltage source	$V=E$	1	0	E
Current source	$I=J$	0	1	J

$$
\left(\boldsymbol{Y} \boldsymbol{V}_{b}+\mathbf{Z I}=\boldsymbol{W}\right)
$$

Selecting \mathbf{Y}, \mathbf{Z} and \mathbf{W} : Controlled Sources

VCCS (Voltage-Controlled Current Source)

$$
\left[\begin{array}{ll}
0 & 0 \\
g & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

CCVS (Current-Controlled Voltage Source)

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
-r & 0
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Etc.

$$
\left(\boldsymbol{Y} V_{b}+\mathbf{Z I}=\boldsymbol{W}\right)
$$

Formulation of Circuit Equations
Dr. José Ernesto Rayas-Sánchez
January 29, 2020

Selecting \mathbf{Y}, \mathbf{Z} and \mathbf{W} : Parameters Z and Y

Any multi-port network modeled by classical impedance or admittance parameters can also be represented by

$$
\boldsymbol{Y} \boldsymbol{V}_{b}+\mathbf{Z I}=\boldsymbol{W}
$$

If the network is modeled by impedance parameters \mathbf{Z} :

$$
V_{b}=\mathbf{Z I}, Y=-\mathbf{1}, W=\mathbf{0}
$$

If the network is modeled by admittance parameters \mathbf{Y} :

$$
\boldsymbol{I}=\mathbf{Y} V_{b}, \mathbf{Z}=-\mathbf{1}, W=\mathbf{0}
$$

Selecting $\boldsymbol{Y}, \mathbf{Z}$ and \mathbf{W} : Parameters ABCD

Any two-port network modeled by classical ABCD parameters can also be represented by

$$
\mathbf{Y} \boldsymbol{V}_{b}+\mathbf{Z I}=\boldsymbol{W}
$$

If the network is modeled by ABCD parameters:

then

$$
\left[\begin{array}{cc}
-1 & A \\
0 & C
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & -B \\
-1 & -D
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Formulation of Circuit Equations
Dr. José Ernesto Rayas-Sánchez
January 29, 2020

Tableau Formulation (cont.)

Combining KVL, KCL and circuit elements,

$$
\begin{array}{r}
\boldsymbol{A}^{\mathrm{T}} \boldsymbol{V}_{n}-\boldsymbol{V}_{b}=\mathbf{0} \\
\mathbf{Y} \boldsymbol{V}_{b}+\boldsymbol{Z} \boldsymbol{I}=\boldsymbol{W} \\
\boldsymbol{A} \boldsymbol{I}=\mathbf{0}
\end{array}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\mathbf{1} & \mathbf{0} & -\boldsymbol{A}^{\mathrm{T}} \\
\boldsymbol{Y} & \boldsymbol{Z} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{A} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{V}_{b} \\
\boldsymbol{I} \\
\boldsymbol{V}_{n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{0} \\
\boldsymbol{W} \\
\mathbf{0}
\end{array}\right] \quad \begin{array}{c}
\text { Tableau equation: } \\
\boldsymbol{T} \boldsymbol{X}=\boldsymbol{W}^{\prime}
\end{array}} \\
& \boldsymbol{T}=\left[\begin{array}{ccc}
\mathbf{1} & \mathbf{0} & -\boldsymbol{A}^{\mathrm{T}} \\
\boldsymbol{Y} & \boldsymbol{Z} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{A} & \mathbf{0}
\end{array}\right] \quad \boldsymbol{W}^{\prime}=\left[\begin{array}{c}
\mathbf{0} \\
\boldsymbol{W} \\
\mathbf{0}
\end{array}\right] \quad \begin{array}{l}
\boldsymbol{T} \in \mathfrak{R}^{(2 b+n) \times(2 b+n)} \in \mathfrak{R}^{(2 b+n) \times 1} \\
\boldsymbol{W}^{\prime} \in \mathfrak{R}^{(2 b+n) \times 1}
\end{array}
\end{aligned}
$$

Matrix Density D

The density D of a matrix is defined as

$$
D=\frac{\text { number of nonzero entries in the matrix }}{\text { total number of all entries in the matrix }}
$$

Typically, $D<10 \%$ for \boldsymbol{T} (very sparse matrix)

