Dr. José Ernesto Rayas-Sánchez

Introduction

- A physical circuit is modeled by a number of linear and nonlinear circuit elements connected in a given configuration
- Its behavior is governed by two kinds of equations:
 - Equations for describing the operation of each circuitelement (I-V relationship for each branch)
 - Equations for describing how the circuit-elements are connected (topology)

Formulation of Circuit Equations Dr. José Ernesto Rayas-Sánchez January 29, 2020

Circuit Theory – EM Theory

- Voltages and currents cannot be uniquely defined for transmission lines that do not support transverse electromagnetic (TEM) waves
- Classic circuit theory is valid as a quasi-static approximation of general electromagnetic theory
- Kirchhoff's laws are still applicable at high frequencies provided that
 - Distributed-circuit and radiation effects are modeled within circuit elements (they are treated as "black boxes")
 - Voltages and currents are defined at the terminals of every circuit element

Dr. J. E. Rayas-Sánchez

Oriented Graphs

- It is a graphical representation of the nodes and branches of a circuit
- Branches are oriented by means of an arrow
- A graph is connected if there is at least one path made of branches between every pair of nodes
- An oriented graph retains the topological information about a circuit, suppressing the information about the circuit elements

Dr. José Ernesto Rayas-Sánchez January 29, 2020

Formulation of Circuit Equations Dr. José Ernesto Rayas-Sánchez January 29, 2020

Notation
• Scalars: <i>a</i> , <i>b</i> , <i>c</i>
• Vectors: <i>a</i> , <i>b</i> , <i>c</i> , <i>V</i>
• Matrices: A, B, C
Handwriting
• Identity matrix: <i>I</i> or 1
• Examples:
$a \in \mathfrak{R} \boldsymbol{b} \in \mathfrak{R}^n \boldsymbol{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \qquad \boldsymbol{C} \in \mathfrak{R}^{n \times m} \boldsymbol{C} = \begin{bmatrix} c_{11} & \dots & c_{1m} \\ \vdots & \ddots & \vdots \\ c_{n1} & \dots & c_{nm} \end{bmatrix}$

Dr. José Ernesto Rayas-Sánchez January 29, 2020

Incidence Matrix A

- It stores the topology information of the circuit
- If the circuit has *n*+1 nodes and *b* branches,

$$\boldsymbol{A} \in \mathfrak{R}^{n \times b} \qquad \boldsymbol{A} = [\boldsymbol{a}_{ij}]$$

 $a_{ij} = \begin{cases} 1 & \text{if branch } j \text{ leaves node } i \\ -1 & \text{if branch } j \text{ enters node } i \\ 0 & \text{if branch } j \text{ does not touch node } i \end{cases}$

Formulation of Circuit Equations Dr. José Ernesto Rayas-Sánchez

January 29, 2020

Kirchhoff's Voltage Law (KVL)If V_n is the vector of node voltages, and V_b
is the vector of branch voltages, $V_n \in \Re^{n \times l}$ $V_b \in \Re^{b \times l}$ $V_n = \begin{bmatrix} V_{n1} \\ V_{n2} \\ \vdots \\ V_{nn} \end{bmatrix}$ $V_b = \begin{bmatrix} V_b \\ V_b \\ \vdots \\ V_{bb} \end{bmatrix}$ $A^T V_n - V_b = \mathbf{0}$
 $V_b = A^T V_n$

Dr. J. E. Rayas-Sánchez

Tableau Formulation

- I, V_b and V_n are taken as the unkowns
- For a circuit that corresponds to a connected graph with b branches and n+1 nodes, the number of unknowns is 2b+n
- Equations

 $AI = 0 \qquad A^{\mathrm{T}}V_n - V_b = 0$

provide n + b linearly independent equations

• The rest of the equations (*b*) must be obtained from the circuit element definitions

Formulation of Circuit Equations Dr. José Ernesto Rayas-Sánchez

January 29, 2020

Tableau Formulation (cont.)

General representation of a linear circuit element

$$\begin{bmatrix} \boldsymbol{Y}_1 \\ \boldsymbol{K}_2 \end{bmatrix} \boldsymbol{V}_b + \begin{bmatrix} \boldsymbol{K}_1 \\ \boldsymbol{Z}_2 \end{bmatrix} \boldsymbol{I} = \begin{bmatrix} \boldsymbol{W}_1 \\ \boldsymbol{W}_2 \end{bmatrix}$$

where

 Y_1 and Z_2 represent admittances and impedances, respectively;

 K_1 and K_2 contain dimensionless constants;

and W_1 and W_2 include the independent current and voltage sources, as well as the influence of initial conditions on capacitors and inductors

Dr. J. E. Rayas-Sánchez

Tableau Formulation (cont.)

Using a more compact notation,

$$YV_{h} + ZI = W$$

where

 $\boldsymbol{Y} = [\boldsymbol{Y}_1 \ \boldsymbol{K}_2]^{\mathrm{T}}, \boldsymbol{Z} = [\boldsymbol{K}_1 \ \boldsymbol{Z}_2]^{\mathrm{T}} \text{ and } \boldsymbol{W} = [\boldsymbol{W}_1 \ \boldsymbol{W}_2]^{\mathrm{T}}$ $\boldsymbol{Y} \in \Re^{b \times b} \quad \boldsymbol{Z} \in \Re^{b \times b} \quad \boldsymbol{W} \in \Re^{b}$

Element	Equation	Y	Z	W
Resistor	V - RI = 0	1	- <i>R</i>	0
Conductor	GV - I = 0	G	-1	0
Capacitor	$sCV - I = CV_0$	sC	-1	CV_0
Inductor	$V - sLI = -LI_0$	1	-sL	$-LI_0$
Voltage source	V = E	1	0	E
Current source	I = J	0	1	J

Selecting Y, Z and W: Simple Elements

 $(YV_h + ZI = W)$

Dr. J. E. Rayas-Sánchez

Selecting Y, Z and W: Controlled Sources VCCS (Voltage-Controlled Current Source) $\stackrel{i_{1}}{\xrightarrow{v_{1}}} \stackrel{i_{2}}{\xrightarrow{v_{2}}} \qquad \begin{bmatrix} 0 & 0 \\ g & 0 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} i_{1} \\ i_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ CCVS (Current-Controlled Voltage Source) $\stackrel{i_{1}}{\xrightarrow{v_{1}}} \stackrel{i_{2}}{\xrightarrow{v_{2}}} \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ -r & 0 \end{bmatrix} \begin{bmatrix} i_{1} \\ i_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ Etc. $(YV_{b} + ZI = W)$ Selecting Y, Z and W: Parameters Z and Y

Any multi-port network modeled by classical impedance or admittance parameters can also be represented by

 $YV_{h} + ZI = W$

If the network is modeled by impedance parameters **Z**:

 $V_{h} = ZI, Y = -1, W = 0$

If the network is modeled by admittance parameters *Y*:

$$I = YV_{h}, Z = -1, W = 0$$

Dr. J. E. Rayas-Sánchez

Selecting Y, Z and W: Parameters ABCD

Any two-port network modeled by classical ABCD parameters can also be represented by

$$YV_{h} + ZI = W$$

If the network is modeled by ABCD parameters:

Dr. José Ernesto Rayas-Sánchez January 29, 2020

Tableau Formulation (cont.)Combining KVL, KCL and circuit elements, $A^{T}V_{n} - V_{b} = 0$ $YV_{b} + ZI = W$ AI = 0 $\begin{bmatrix} 1 & 0 & -A^{T} \\ Y & Z & 0 \\ 0 & A & 0 \end{bmatrix} \begin{bmatrix} V_{b} \\ I \\ V_{n} \end{bmatrix} = \begin{bmatrix} 0 \\ W \\ 0 \end{bmatrix}$ Tableau equation:TX = W' $T = \begin{bmatrix} 1 & 0 & -A^{T} \\ Y & Z & 0 \\ 0 & A & 0 \end{bmatrix}$ $W' = \begin{bmatrix} 0 \\ W \\ 0 \end{bmatrix}$ $T \in \Re^{(2b+n) \times (2b+n)}$ $X \in \Re^{(2b+n) \times 1}$ $W' \in \Re^{(2b+n) \times 1}$

Matrix Density D

The density D of a matrix is defined as

 $D = \frac{\text{number of nonzero entries in the matrix}}{\text{total number of all entries in the matrix}}$

Typically, D < 10% for **T** (very sparse matrix)