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Abstract—This paper reviews the current state-of-the-art
in electromagnetic (EM)-based design and optimization of
microwave circuits using artificial neural networks (ANNs).
Measurement-based design of microwave circuits using ANNs is
also reviewed. The conventional microwave neural optimization
approach is surveyed, along with typical enhancing techniques,
such as segmentation, decomposition, hierarchy, design of exper-
iments, and clusterization. Innovative strategies for ANN-based
design exploiting microwave knowledge are reviewed, including
neural space-mapping methods. The problem of developing
synthesis neural networks is treated. EM-based statistical analysis
and yield optimization using neural networks is reviewed. The
key issues in transient EM-based design using neural networks
are summarized. The use of ANNs to speed up “global modeling”
for EM-based design of monolithic microwave integrated circuits
is briefly described. Future directions in ANN techniques to
microwave design are suggested.

Index Terms—Artificial neural networks (ANNs),
computer-aided design (CAD), design automation,
electromagnetic (EM)-based optimization, inverse modeling,
neural models, optimization methods, RF and microwave
modeling, space mapping (SM), surrogate models, synthesis
neural networks.

I. INTRODUCTION

ANEURAL network may be thought of as a sophisticated
signal processor, in which the strength of each synapse

(i.e., the synaptic weight), the bias, and threshold values of each
neuron at steady state constitute the network’s program. Arti-
ficial neural networks (ANNs) are information-processing sys-
tems that emulate biological neural networks: they are inspired
by the ability of the human brain to learn from observation and
generalize by abstraction.

The modern era of ANNs started in the 1940s and explosively
developed in the 1980s, finding applications in many areas of
science, engineering, management, and other disciplines.

Neural-network applications in microwave engineering have
been reported since the 1990s. Description of ANNs and key
issues, namely, architectures, paradigms, training methods,
data set formation, learning and generalization errors, learning
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speed, etc., in the context of microwave computer-aided
design (CAD), has been extensively reported [1]–[6]. An
excellent compilation and review of the main issues and initial
applications of ANNs in the microwave arena was made
by Burrascano and Mongiardo [6]. Patnaik and Mishra [7]
developed a synthetic review of ANN techniques to microwave
modeling, design, and measurement problems (with some
emphasis on antenna applications). Another excellent review
on ANNs for microwave modeling is the work by Devabhaktuni
et al. [8], which includes a comprehensive foundation to neural
model development, as well as a list of practical microwave
neuromodels. It is clear that neural networks have been widely
used for modeling microwave devices and circuits in several
innovative ways. The training and testing data for these models
are typically obtained from full-wave electromagnetic (EM)
simulators, from physics-based models, or from measurements.
In the case of massive simulation tasks such as those required
in RF/microwave subsystems (e.g., front ends for mobile and
personal communications), the training and testing data can be
obtained from standard harmonic-balance simulations using
detailed circuit models [9]. The resultant neural models are
excellent vehicles for fast and accurate simulation. Examples
of neuromodeled microwave structures are shown in Table I.

In contrast, the use of neural networks for microwave de-
sign by optimization is at a less developed stage. This paper
aims at reviewing the relevant work in EM-based design and
optimization of microwave circuits exploiting ANNs. Measure-
ment-based design of microwave circuits using ANNs is also
reviewed.

The conventional and most popular microwave neural opti-
mization approach is reviewed in Section II. Advantages and
drawbacks of this strategy are emphasized. Improvements of
this “black-box” approach through segmentation, decomposi-
tion, hierarchy, design of experiments (DoE), and clusterization
are considered.

The main limitations of the conventional neural optimization
approach can be alleviated by incorporating available knowl-
edge into the neural-network training scheme. Several inno-
vative strategies that exploit knowledge are reviewed in Sec-
tion III, including the difference method (also called the hy-
brid EM–ANN), the prior knowledge input (PKI) method, the
knowledge-based artificial neural-network approach (KBNN),
the neural space-mapping (NSM) optimization method, the ex-
tended NSM approach, and the neural inverse space-mapping
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TABLE I
NEURAL MODELS FOR MICROWAVE COMPONENTS

Passive Components Selected References

MMIC spiral inductors [27,90,91]

Capacitors [92,93]

Embedded resistors [94]

Microstrip interconnects [30,95]

Microstrip vias [30,34]

Microstrip bends [96,97]

Microstrip lines on PBG [98]

CPW components [21,99,100]

Waveguide elements [101-103]

PBG waveguides [98]

Active Devices Selected References

Diodes [104,105]

MESFETs [10,23,36,45,106-109]

HBTs [2,45,110,111]

HEMTs [28,38,58,59,112]

Circuits and Systems Selected References

Filters [2,6,12,32,44,94,97,100]

Amplifiers [9,10,23,25,45,76,108,113]

Mixers [77,79]

VLSI interconnects [10,11,82]

Antennas [114-121]

Radar target recognition [122,123]

(NISM) optimization algorithm. Practical examples using these
techniques are illustrated.

Another strategy for ANN-based design of microwave cir-
cuits is reviewed in Section IV, which consists of developing
synthesis neural networks, also called “inverse neural models.”
A synthesis neural network is trained to learn the mapping from
the responses to the design parameters of the microwave cir-
cuit. Difficulties in developing synthesis neural networks are
indicated. Several cases of successful inverse modeling are de-
scribed.

Section V deals with several methods for EM-based statistical
design using neural networks. A relevant microwave problem
illustrates the use of neural networks for efficient and accurate
yield optimization.

The key issues on transient EM-based design using neural
networks are described in Section VI. Suitable paradigms for
approximating nonlinear dynamic behavior are mentioned, such
as a recurrent neural network (RNN) and their corresponding
training techniques.

In Section VII, the exploitation of ANNs in the so-called
“global modeling” technique is described. “Global modeling”
refers to a technique for unifying the EM analysis of passive
structures and the semiconductor theory related to the active de-
vices by coupling the transport equations with Maxwell’s equa-
tions. The use of neural networks to speed up “global modeling”
for EM-based design of monolithic microwave integrated cir-
cuits (MMICs) is briefly described.

An attempt to predict some future directions of ANN tech-
niques for microwave design is discussed in Section VIII. Fi-
nally, in Section IX, some conclusions are drawn.

Fig. 1. Conventional neural optimization concept. (a) Training the ANN to
approximate the fine model responses in a region of interest. (b) Designing with
the already trained neuromodel.

II. CONVENTIONAL NEURAL OPTIMIZATION APPROACH

The most common strategy for optimizing microwave circuits
using neural networks consists of generating a neuromodel of
the microwave structure within a certain training region of the
design parameters, and then applying conventional optimization
to the neuromodel to find the optimal solution that yields the de-
sired response. This technique is illustrated in Fig. 1. Examples
of this neural optimization approach can be found in [10]–[13].

The neuromodel is trained such that it approximates the fine
model responses in a region of interest for the design param-
eters and operating conditions , as illustrated in Fig. 1(a).
The fine model responses are typically obtained from an
EM simulator; in general, they represent the responses of an
accurate, but computationally expensive model (the term “fine
model” comes from the space-mapping literature [14]). The op-
erating conditions are in vector , which might contain any re-
quired combination of independent variables according to the
nature of the simulation, such as the operating frequencies, bias
levels, excitation levels, rise time, fall time, initial conditions,
temperature, etc. Vector contains the internal free parameters
of the ANN (weighting factors, bias, etc.).

If represents the input–output relationship of the ANN, the
process of training the neuromodel [see Fig. 1(a)] can be formu-
lated as an optimization problem, where an optimal vector of the
ANN parameters is found by minimizing the difference be-
tween the ANN outputs and the fine model responses at all the
learning samples

(1)

where denotes a suitable norm (typically Euclidean, Man-
hattan, or Huber), is the total number of learning samples, and

is the error vector for each of those samples

(2)

with

(3a)

(3b)

(3c)

where is the number of training base points for the design pa-
rameters and is the number of independent variable points. It
is seen that the total number of learning samples is .
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The complexity of the ANN must be properly selected: the
number of internal free parameters has to be sufficiently large
to achieve a small learning error, and sufficiently small to avoid
poor generalization performance, i.e., ANNs that are too small
cannot approximate the desired input–output relationship, while
those with too many internal parameters perform correctly on
the learning set, but give large errors at points not seen during
training [15]. The generalization ability of the neuromodels is
controlled during the training process (1) by using validation
and testing data, also obtained from fine model evaluations (typ-
ically full-wave EM simulations or measurements).

Multilayer feed-forward perceptrons are the most common
paradigm for implementing the neuromodels [6]. In principle,
they offer an accurate vehicle to model complex phenomena
since it has been shown [16] that standard multilayer feed-for-
ward networks can approximate any measurable function to any
desired level of accuracy, provided a deterministic relationship
between input and target exists.

Once an appropriate ANN is trained with sufficient learning
samples and adequate generalization performance, i.e., once the
optimal free parameters are determined, the ANN can be
used for fast and accurate simulations within the region of in-
terest. It can also be used for inexpensive optimization to find an
approximation of the optimal fine model solution that yields
the desired response [see Fig. 1(b)]. The design
problem consists of finding such that

(4)

where is the objective function (typically minimax) expressed
in terms of the design specifications.

When the already trained neuromodel is optimized to find
the optimal fine model solution , conventional optimization
methods [17], [18] are typically used.

In [19] and [20], a modified version of the training algorithm
used to develop the neuromodel is employed for searching the
optimal design. In this case, the backpropagation algorithm with
a modified learning rule where the weights are kept fixed while
the input design parameters are considered as free parameters is
used to find the optimal design. In this sense, the neural network
is considered in [19] and [20] as a “bidirectional model,” and the
process of training the ANN with as free parameters is con-
sidered as a “reverse-modeling” process. This reverse-modeling
approach is illustrated in [19] and [20] by designing microwave
HBT amplifiers.

In any case, the conventional approach to ANN-based design
allows us to search for multiple solutions if different starting
points for the design parameters are used.

A. Segmentation and Decomposition

The neuromodel to be used for design by optimization can
be developed for the microwave circuit as a whole, or in a de-
composed manner, where small neuromodels are developed for
each individual section in the circuit, which are later connected
by circuit theory. Full-wave EM simulations are typically em-
ployed to generate the training, validation, and testing data for
each section of the microwave circuit. Examples of this decom-

Fig. 2. Decomposed conventional neural optimization concept. (a) Training
theM neural networks to approximate the individual responses. (b) Designing
with the already trained decomposed neuromodel.

posed approach are found in [21] and [22]. The design of a mi-
crostrip corporate feed embedded in the middle of a Duroid sub-
strate is realized in [22] by characterizing each junction in the
corporate feed using neural networks.

A different technique for neuromodeling decomposition can
be used when the complete set of responses contained in
are difficult to approximate with a single ANN. In those cases,
the learning task can be distributed among a number of ANNs,
which, in turn, divides the output space into a set of subspaces.
The corresponding ANNs are trained individually to match each
response (or subset of responses) contained in . The tech-
nique is illustrated in Fig. 2. Examples of this approach are
found in [23]. For instance, each output current and complex
admittance parameter of a MESFET transistor is approximated
in [23] by an individual neural network within a certain region
of bias voltages and operating frequencies.

B. Exploiting Hierarchy

Practical CAD tools require abundant libraries of accurate
and computationally efficient models. If neuromodels are to be
used for efficient microwave design, the development of these
libraries demands a more intelligent approach than developing
individual neuromodels for each component of each library, oth-
erwise massive fine model data generation and repetitive model
training would be necessary. As a response to this challenge, a
hierarchical neural-network approach is proposed in [24], which
basically consists of two stages. In the first one, the fundamental
performance of a family of components of a library is iden-
tified and the corresponding basic (or low-level) neuromodels
are developed. In the second stage, a neural network based on a
suitable combination of the low-level neuromodels is trained to
map the low-level responses to the fine model responses of each
component in that family. Examples of high-speed interconnect
libraries and physics-based MESFET libraries are developed in
[24] following this approach.

C. Final Remarks on the Conventional ANN-Based
Design Approach

The conventional approach to ANN-based design described
before, which is also known as the “black-box” approach [25],
has the following three main disadvantages:

1) time required to generate sufficient training, validation,
and testing samples;



RAYAS-SÁNCHEZ: EM-BASED OPTIMIZATION OF MICROWAVE CIRCUITS USING ANNS 423

 

Fig. 3. Neuromodeling by preliminary clusterization of similar responses
using the SOMs. (a) Training a small ANN as a first-order approximation of
the fine model. (b) Training a SOM network to detect the classes of responses.
(c) Training small ANNs, each of them specialized on a class of responses.

2) unreliability of the optimal solution when it lies outside
the training region (due to the well-known poor extrapo-
lation performance of ANNs);

3) “curse of dimensionality,” which refers to the fact that
the number of learning samples needed to approximate
a function grows exponentially with the ratio between the
dimensionality and its degree of smoothness [26].

Essentially, the number of fine model evaluations needed in this
approach grows exponentially with the number of design pa-
rameters in the circuit.

An alternative to reduce the size of the learning set in the
black-box approach is to carefully select the learning points
using the DoE methodology to ensure adequate parameter cov-
erage, as in [27] and [28].

Another way to speed up the learning process is proposed
in [6] by means of preliminary neural clusterization of sim-
ilar responses using the self-organizing feature map (SOM) ap-
proach. An interpretation of the general concept is illustrated
in Fig. 3. Vector represents the internal free parameters of
a basic ANN that is taken as a rough approximation of the
fine model in the region of interest, while vector represents
the internal free-parameters of the SOM network. The SOM is
developed such that it can automatically identify a number of
classes of behavior (or groups of similar responses) according
to some previously defined criteria. Individual neural networks
[(multiple-layer perceptrons (MLPs)] are then trained with the
data associated with each class. Experiments are reported in [6]
showing reduction in the overall training time of up to 80% with
respect to that required by a single neural-network model.

The conventional neural optimization approach is indeed very
suitable when the device’s physics is not fully understood (i.e.,
when there is no empirical model available for the device), but
the device’s outputs for specified inputs are available either from
measurements or from accurate simulations. On the other hand,
an important advantage of the conventional neural optimiza-
tion approach is its adequacy for full automation. An algorithm
for automatic development of conventional (black-box) neuro-

Fig. 4. Hybrid EM–ANN or difference method for neural optimization.
(a) Training the ANN to approximate the difference between the fine and coarse
model responses. (b) Designing with the already trained hybrid EM–ANN
neuromodel.

models of microwave circuits is proposed by Devabhaktuni et
al. [29]. This algorithm can automatically generate a neuro-
model for any desired accuracy within a user-defined region of
interest. The process of generating fine-model training data, as
well as the process of regulating the ANN complexity is fully
automated. Once the neural model automatically developed is
available, the algorithm could be in principle expanded to au-
tomated design by optimization given a number of user-defined
specifications and constraints, although this has not yet been re-
ported.

III. NEURAL EM-DESIGN EXPLOITING

MICROWAVE KNOWLEDGE

The three main limitations of the conventional neural opti-
mization approach can be alleviated by incorporating available
microwave knowledge into the neural-network training scheme.
Several innovative strategies have been proposed to incorporate
this knowledge.

A. Difference Method

Also known as the hybrid EM–ANN method, the difference
method makes use of the difference in -parameters between
an available coarse model and the fine model to train the corre-
sponding neural network, as illustrated in Fig. 4(a). The coarse
model responses are typically obtained from an empirical
equivalent circuit model, which is very fast to evaluate, but is not
sufficiently accurate in all the regions of interest for the design
parameters and operating conditions (the term “coarse model”
comes from the space-mapping (SM) literature [14]). Training
the neuromodel in the difference method can be formulated as
(1)–(3), but replacing (2) by the error vector

(5)
Once the ANN is trained to approximate the difference be-

tween the fine and coarse model responses in the region of in-
terest, it can be combined with the coarse model, as in Fig. 4(b),
to yield an inexpensive and accurate approximation of the fine
model, which can be used for conventional optimization. The
design problem is then formulated as finding such that

(6)
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Fig. 5. Illustrating how the difference between the fine and coarse model responses can be as complex as the fine model responses themselves. This example
corresponds to the HTS microstrip filter reported in [33]. (a) Coarse model responses (OSA90/hope) at 13 base points. (b) Fine model responses (Sonnet’s em) at
the same base points. (c) Absolute difference between fine and coarse model responses.

It has been reported [30] that the number of fine model sim-
ulations needed to train the ANN can be significantly reduced
in the difference method with respect to the conventional ap-
proach. However, it is recognized in [31] that this reduction in
training samples is achieved only when the mapping from the
difference between the fine and coarse model responses to the
input parameters is simpler than the original target relationship,
which is not always possible, depending on the coarse model
accuracy. The hybrid EM–ANN approach was used in [32] to
design an end-coupled bandpass filter in a two-layer configura-
tion.

To illustrate how the difference between the fine and coarse
model responses can be as complex as the fine model responses
themselves, consider the high-temperature superconducting
(HTS) microstrip filter in [33]. Fig. 5 shows the coarse model
responses at 13 base points, the corresponding fine model
responses, and the absolute difference between them. It is seen
that the difference between both models also look like filter
responses due to the severe misalignment of the coarse model
responses. Modeling the difference by a neural network would
represent almost the same effort as modeling the fine model
directly.

B. PKI Method

In the PKI method proposed by Gupta et al., the coarse model
responses are used as inputs for the ANN in addition to the other
inputs, as illustrated in Fig. 6. The neural network is trained such
that its response is as close as possible to the fine model re-
sponse for all the data in the training set [see Fig. 6(a)]. Once it
is trained, it can be used with the coarse model to realize effi-
cient optimization [see Fig. 6(b)]. It has been reported [31], [34]
that the PKI approach exhibits better accuracy than the hybrid

Fig. 6. PKI method for neural optimization. (a) Training the ANN to
approximate the fine model responses, considering the coarse model responses
as additional inputs to the ANN. (b) Designing with the already trained PKI
neuromodel.

EM–ANN approach, at the expense of a more complex ANN.
The PKI method is used in [35] to optimize a coplanar wave-
guide (CPW) patch/slot antenna on Duroid.

C. KBNN Approach

In the so-called KBNN, developed by Wang and Zhang [36],
the available knowledge is inserted in the internal structure of
the ANN, as illustrated in Fig. 7. This knowledge takes the form
of microwave empirical or semianalytical information.

KBNNs have non-fully connected architectures, with one or
several layers assigned to the microwave knowledge in the form
of single or multidimensional vector functions, usually obtained
from available closed-form expressions based on quasi-static
approximations.

By inserting the microwave empirical formulas into the
neural-network structure, the empirical formulas can be refined
or adjusted as part of the overall neural-network training
process. Since these empirical functions are used for some
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Fig. 7. KBNN approach to neural optimization of microwave circuits. (a) Training the KBNN model (the empirical functions and formulas are embedded in the
ANN internal structure). (b) Designing with the already trained KBNN model.

neurons instead of standard activation functions, KBNNs do
not follow a typical multilayer perceptron architecture and are
trained using other methods than the conventional backpropa-
gation [36]. In Fig. 7(a), vector contains not only the typical
free parameters of an ANN (weights, bias, etc.), but also the
adjustable parameters of the microwave empirical functions.

KBNNs have been extensively used for developing models
of microwave circuits [36]–[38]. In contrast, there are no mi-
crowave design examples using KBNNs (as defined here) re-
ported in the literature. Nevertheless, once a KBNN model is
appropriately trained, it could be used as an accurate and in-
expensive model for realizing conventional optimal design [see
Fig. 7(b)].

D. Sensitivity of KBNNs

Sensitivity information is very important in design by op-
timization. The evaluation of the output derivatives with re-
spect to the design variables without resorting to finite-differ-
ence schemes can improve the numerical performance of a large
class of optimization methods typically employed for design.
When conventional feed-forward neural networks are used, the
Jacobian of the ANN outputs with respect to its inputs can be
obtained in closed form [39]. When a generic KBNN is used,
i.e., when microwave functions are embedded within the ANN
topology, the KBNN sensitivity information can be obtained
using the formulation proposed by Xu et al. [40], [41]. In this
formulation, two ANNs are used: the original neural network
and another called the adjoint neural network. The adjoint neural
network is defined such that once the original neural network
is trained using the input/output data, the outputs of the ad-
joint neural network automatically becomes the derivatives of
the output data with respect to the input data. This formulation
is used in [41] to find by optimization the solution of feasible
regions of very large scale integration (VLSI) interconnect ge-
ometries given a budget on electrical performance.

E. NSM Optimization

NSM optimization follows an SM approach to design [14],
[42], where the mapping function from the fine to the coarse
model parameter space is implemented by an ANN. NSM op-
timization represents the first algorithmic formulation of ANN-
based design of microwave circuits [43]. A simplified flow dia-
gram for NSM optimization is illustrated in Fig. 8.

NSM starts by finding the optimal coarse model solution
that yields the desired response by applying conventional

optimization to the coarse model. In Fig. 8, represents the
same objective function used in (4) and (6). additional points
centered at are selected as the initial training set to develop
an SM-based neuromodel [44], where is the number of de-
sign parameters ( , ). Training the neuromapping is
formulated as (1)–(3), but replacing (2) by the error vector

(7)

Once an SM-based neuromodel is trained [see Fig. 9(a)], it
is used as an improved coarse model (also called the “surrogate
model”), optimizing its parameters to generate the desired re-
sponse. The solution to the optimization problem

(8)

becomes the next iterate and is included in the learning set [see
Fig. 9(b)].

The fine model response at the new point is calculated
and compared with the desired response. If they are not
close enough, the SM-based neuromodel is retrained over the
extended set of learning samples and the algorithm continues,
otherwise the algorithm terminates.

An interesting feature of NSM optimization is that the inde-
pendent variable can also be transformed through the neural
network in order to improve the alignment between the fine and
coarse model responses. Additionally, NSM allows us to map
only some of the design parameters. This flexibility yields a
number of different techniques to establish the neuromapping

, all of them illustrated in [33] and [44] for linear frequency-
domain cases. An extension of the NSM modeling technique
[44] applicable for nonlinear device modeling and large-signal
simulation is in [45].

NSM optimization is used in [33] to design a HTS
quarter-wave parallel coupled-line microstrip filter, as well
as a bandstop microstrip filter with quarter-wave resonant
open stubs. NSM optimization has only been reported for
frequency-domain design problems.

F. Extended NSM Approach

Although the original formulation of SM optimization con-
siders and with different dimensions [42] and even with
different design variables [14], the initial versions of SM-based
algorithms were implemented and illustrated assuming that the
optimization variables of the fine and coarse models are the
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Fig. 8. Simplified flow diagram for NSM optimization.

Fig. 9. Main conceptual steps in NSM optimization. (a) Training the
space-mapped-based neuromodel on all the accumulated learning points.
(b) Calculating the next iterate by designing with the already trained
space-mapped-based neuromodel.

same. Typically, and are vectors with the same dimension
containing corresponding physical parameters (lengths, widths,
heights, dielectric constants, etc.). This is true in [14], [42], and
[46]–[51], and NSM optimization is no exception. This con-
straint was probably motivated by the fact that the mapping be-
tween both models can be easily initialized with a unit mapping,
and that the Broyden updating formula usually considers and

with the same dimensionality, i.e., a system of nonlinear
equations with unknowns is assumed [52].

More recent versions of SM-based optimization algorithms
allow different dimensionality in and , but still it is as-
sumed they are of the same nature ( contains a subset of the
design variables contained in ). That is the case in [53] and
[54], where the coarse model optimization variables include not
only the fine model optimization variables, but also some preas-
signed parameters. The novel output SM [55] relates the mapped

coarse model responses to the fine model responses so that the
mapped vectors (responses) are also of the same nature and di-
mensionality.

In the most general case of input SM, the optimization vari-
ables of the fine and coarse models could be of different nature
and dimension, hence, the term “extended SM.” For instance,
might contain the element values of an equivalent lumped circuit
of a microwave structure, while might contain the physical
dimensions and material constants of that structure.

An SM-based optimization algorithm for this general or ex-
tended mapping was proposed in [56] by using two different
mappings, one for the parameters with the same design vari-
ables (the normal linearized mapping, which is updated using
Broyden’s formula), and a second one called “knowledge map-
ping,” which is used to translate from the circuit to the phys-
ical variables in the coarse model using empirical formulas. The
technique described in [56] realizes the coarse model optimiza-
tion phase and the parameter extraction phase at the circuit pa-
rameter level and not at the physical parameter level. Several
low-temperature co-fired ceramic (LTCC) filters are designed
in [56] following this scheme. Another example of extended
SM optimization is in [57], where contains geometrical
parameters of a multiplexer channel, while contains the cor-
responding coupling matrix elements.

In contrast, an ANN-based design approach for this general
case of extended SM has not been reported in the literature, only
a neural modeling strategy was proposed in [58] and [59], where

contains the element values of a conventional small-signal
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Fig. 10. Extended NSM modeling approach used in [36] and [37] for
modeling an HEMT. The ANN output contains the bias-dependent intrinsic
elements xxx = [C R C g � g C ] . Once the ANN is trained, the
combination of the ANN and the small-signal equivalent circuit approximates
the large-signal behavior of the active device. Here, the physical structure of the
device is fixed, and the design variables are the bias levels xxx = [V V ] .
RRR contains the S-parameters measured at various bias settings.

equivalent circuit of a high electron-mobility transistor (HEMT)
(whose physical dimensions are fixed), while contains the
bias voltages. contains the -parameters measured at var-
ious bias settings. In this manner, once a suitable ANN is prop-
erly trained, the combination of the ANN and the small-signal
equivalent circuit approximates the large-signal behavior of the
active device (see Fig. 10) in the region of training.

G. NISM Optimization

NISM optimization is another algorithmic approach to
ANN-based design, where the inverse of the mapping between
the fine and coarse models is implemented with a neural net-
work [60]. NISM optimization follows an aggressive approach
in the sense of not requiring a number of up-front fine model
evaluations to begin building the inverse mapping.

As in any other SM algorithm, NISM starts by finding the op-
timal coarse model solution that yields the desired response
by optimizing the coarse model, followed by a fine model eval-
uation at . Next, parameter extraction is performed, which
consists of finding the coarse model parameters that make as
close as possible to [see Fig. 11(a)]. The inverse of the map-
ping is trained with all the accumulated points from previous
parameter extractions, as illustrated in Fig. 11(b). Training the
inverse neuromapping at the th iteration is formulated as

(9)

with

(10)

The next iterate is calculated by simply evaluating the current
inverse neuromapping at the optimal coarse model solution [see
Fig. 11(c)]

(11)

If the relative changes in the fine model parameters are small
enough, NISM stops, otherwise a new parameter extraction is
realized and the algorithm continues. A simplified algorithm for
NISM optimization is illustrated in Fig. 12.

NISM is used in [61] to design a capacitively loaded 10 : 1
two-section impedance transformer, a bandstop microstrip filter
with open stubs, and an HTS quarter-wave parallel coupled-line

 

Fig. 11. Main sub-processes in NISM optimization. (a) Parameter extraction.
(b) Training the inverse of the mapping using all the accumulated points.
(c) Predicting the next iterate by evaluating the current inverse mapping at the
optimal coarse model solution.
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Fig. 12. Simplified flow diagram for NISM optimization.

microstrip filter. NISM optimization is compared in [62] with
NSM optimization, as well as with the trust region Aggressive
SM algorithm exploiting surrogates [51]. It is found in [62] that,
in all the examples considered, NISM optimization not only re-
quires fewer fine model evaluations, but also arrives at a solution
closer to the solution of the original optimization problem (the
direct optimization of the fine model).

As in the case of NSM optimization, NISM optimization has
only been illustrated for frequency-domain design problems,
where and are the same optimization variables.
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Fig. 13. Synthesis neural networks for microwave design. (a) Training the
synthesis ANN to approximate the design parameters that generate each
response. (b) Designing with the already trained inverse neuromodel in
principle consists of simply evaluating the synthesis neural network at the
desired response.

IV. SYNTHESIS NEURAL NETWORKS

Another strategy for ANN-based design of microwave cir-
cuits consists of using synthesis neural networks, also called
“inverse neural models.” A synthesis neural network is trained
to learn the mapping from the responses to the design parame-
ters of the microwave circuit. In this sense, a conventional neu-
romodel becomes an analysis neural network. The problem of
training a synthesis neural network is known as the inverse mod-
eling problem since the input and output variables are inter-
changed. This idea is illustrated in Fig. 13, where the ANN is
trained such that it can synthesize the design parameters for
a given response .

The analysis problem is characterized by a single-value map-
ping: given a vector of design parameters, we have only one
possible vector of responses. However, for inverse problems, the
mapping can often be multivalued: a given vector of responses
can be generated by several different vectors of design parame-
ters. This might lead the synthesis neural network to make poor
generalizations. Another complication of the inverse modeling
problem is the coverage of the input space by the training data
since the full characterization of the input space (microwave cir-
cuit responses) is usually not available.

A successful case of synthesis ANN development is reported
by Selleri et al. [63] and Fedi et al. [64], where an inverse
neuromodel was obtained for predicting the position and
the radius of a cylindrical post in a rectangular waveguide
given a frequency sweep of obtained from full-wave
finite-element EM simulations. The synthesis neural net-
work is trained with a number of vectors and

. It is reported in [63] that the
synthesis ANN yields high accuracy for three testing points
(three frequency sweeps) not seen during training.

An interesting approach is employed in [63] to design a pro-
filed corrugated circular horn antenna by using synthesis neural
networks. In this problem, the effects of the multivalued design
relationship is overcome by taking a subset of the original design
parameters (keeping constant the rest of them), by considering
only some of the original responses (with a posteriori valida-
tion), and by imposing a selection criterion on the geometries
predicted by the neural network.

A dedicated algorithm for the design of multilayer asym-
metric coupled transmission structures using a combination of

analysis neural networks, synthesis neural networks, and equiv-
alent lumped circuits was successfully developed by Watson et
al. [65]. In that paper, the input space of the synthesis neural
network is not the set of -parameters, but a set of lumped cir-
cuit parameters that are later translated into the conventional re-
sponses. The physical parameters (the width of each line and
the spacing between their edges) are the outputs of the synthesis
ANN and the inputs of the analysis ANN. Similarly, the output
space of the analysis ANN is not the set of scattering parame-
ters, but a set of LC parameters used in an equivalent lumped
circuit that generates the actual responses.

Developing synthesis neural networks for general microwave
design appears to be far from automation. The most serious dif-
ficulty is the multivalued relationship in the inverse model. User
intervention is most likely needed in terms of choosing suitable
design parameters, i.e., in determining selection criteria to im-
pose a one-to-one relationship. It appears that only dedicated
algorithms for very specific design problems are amenable to
automation.

V. ANN-BASED STATISTICAL DESIGN

Accurate statistical analysis and yield optimization of mi-
crowave components are crucial ingredients for manufactura-
bility-driven designs in a time-to-market development environ-
ment. Yield optimization requires intensive simulations to cover
the entire statistic of possible outcomes of a given manufac-
turing process. In practice, random variations in the manufac-
turing process of a microwave device may result in a signifi-
cant percentage of the produced devices not meeting the spec-
ifications. When designing, it is essential to account for these
inevitable uncertainties. Given the recognized accuracy of EM
full-wave field solvers, it is desirable to include them in the sta-
tistical analysis and yield-driven design of microwave circuits.
Unfortunately, their high computational cost imposes serious
constraints for their direct intensive usage.

Significant contributions have been made to the EM-based
statistical analysis and design of microwave circuits.
Yield-driven EM optimization using multidimensional
quadratic models that approximate the EM model responses
for efficient and accurate evaluations was proposed in [66]. A
more integrated CAD system for statistical analysis and design
was proposed by Bandler et al. [67], where quadratic modeling
and interpolation techniques were unified.

A. Yield Analysis and Design Using ANNs

The most basic approach to ANN-based EM statistical
design consists of applying conventional neuromodeling over
a certain region of interest (see Section II) and then applying
conventional Monte Carlo analysis techniques and conven-
tional yield optimization techniques to the inexpensive, but
accurate neuromodel. In [10], the yield for the gain and input
voltage standing-wave ratio (VSWR) of an -band amplifier
is optimized by using conventional neuromodels. In [12], a
conventional neuromodeling procedure is followed to develop a
fast and accurate model of an -plane metal-insert waveguide
filter, within a region defined by certain nominal manufacturing
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tolerances. This neuromodel is later used to efficiently predict
the yield on a large set of outcomes.

The exploitation of neuromodels to estimate integrated-cir-
cuit (IC) parametric yield is demonstrated by Creech and
Zurada [105]. Here the neuromodel is developed in a decom-
posed fashion (see Section II-A), using training data obtained
from measurements, including doping concentrations, layer
thicknesses, planar geometries, resistivities, device voltages,
and currents in MESFET devices. Inverse neuromodels are also
developed to perform yield optimization. Excellent agreement
between the neuromodel yield prediction and the actual yield is
reported.

The use of SM-based neuromodels to perform accurate and
efficient yield analysis and optimization of microwave devices
is proposed by Bandler et al. [68]. Here, it is assumed that the
SM-based neuromodel is already available, obtained either from
a modeling process [44] or from an optimization process [33].
It is shown in [68] that if the SM-based neuromodel is properly
developed, the sensitivities of the fine model responses can
be approximated using

(12)

where denotes the Jacobian of the coarse model responses
with respect to the coarse model parameters and mapped inde-
pendent variable, while denotes the Jacobian of the neu-
romapping with respect to the fine model parameters. can be
inexpensively computed using the coarse model, while can
be calculated in exact closed form if conventional architectures
are used for the ANN (e.g., three-layer perceptrons).

B. Example of Yield Optimization Through NSM

Consider optimizing the yield of an HTS quarter-wave par-
allel coupled-line microstrip filter [68], whose physical struc-
ture is illustrated in Fig. 14. , , and are the lengths of the
coupled-line sections and , , and are the corresponding
separations. The width is the same for all the sections, as well
as for the input and output lines, of length . A lanthanum–alu-
minate substrate with thickness and dielectric constant is
used. The design specifications are in the passband
and in the stopband, where the stopband includes
frequencies below 3.967 GHz and above 4.099 GHz, and the
passband lies in the range of 4.008 to 4.058 GHz.

OSA90/hope1 built-in elements for microstrip lines,
two-coupled microstrip lines, and open circuits connected by
circuit theory over the same substrate definition are taken as
the “coarse” model. Sonnet’s em2 with a high-resolution grid
is used as the fine model.

The SM-based neuromodel of the HTS filter obtained
in [44] is used to perform yield analysis and optimiza-
tion. This model was obtained assuming that the design
parameters are , and taking

mil, mil, mil, , and
loss tangent 3 10 ; the metallization was considered loss-
less. The corresponding SM-based neuromodel is illustrated in

1OSA90/hope and Empipe, ver. 4.0, Agilent Technol., Santa Rosa, CA (for-
merly Optimization Systems Associates Inc.), Dundas, ON, Canada.

2em, ver. 4.0b, Sonnet Software Inc., Liverpool, NY, 1997.

 

Fig. 14. HTS quarter-wave parallel coupled-line microstrip filter.

 

 

Fig. 15. SM-based neuromodel of the HTS filter for yield analysis and
optimization. L and S correspond to L and S after transformation by
the neuromapping (as used by the coarse model).

Fig. 15, which implements a frequency partial-space-mapped
neuromapping with seven hidden neurons, mapping only
and and the frequency (3LP:7-7-3). and in Fig. 15
denote the corresponding two physical dimensions as used by
the coarse model, i.e., after being transformed by the mapping,
while represents the operating frequency (as used by the
fine model), and is the frequency used by the coarse model
(transformed by the neuromapping).

To realize yield analysis, it was considered a 0.2% of varia-
tion for the dielectric constant and for the loss tangent, as well as
75 m of variation for the physical dimensions, as suggested in
[69], with uniform statistical distributions. The SM-based neu-
romodel was first optimized, and the statistical analysis was re-
alized around this optimal nominal solution with 500 outcomes
using OSA90/hope. The responses for 50 of those outcomes are
shown in Fig. 16. The yield calculation is shown in Fig. 17. A
yield of only 18.4% is obtained, which is reasonable considering
the well-known high sensitivity of this filter.
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Fig. 16. Monte Carlo yield analysis of the SM-based neuromodel responses
around the optimal nominal solution with 50 outcomes.

Fig. 17. Histogram of the yield analysis of the SM-based neuromodel around
the optimal nominal solution with 500 outcomes.

Fig. 18. Monte Carlo yield analysis of the SM-based neuromodel responses
around the optimal yield solution with 50 outcomes.

Yield optimization was then applied to the SM-based neu-
romodel with 500 outcomes using the Yield–Huber optimizer
available in OSA90/hope. The corresponding responses for 50
of those outcomes are shown in Fig. 18. The yield is increased
from 18.4% to 66%, as shown in Fig. 19. An excellent agree-
ment is observed between the fine model response and the
SM-based neuromodel response at the optimal yield solution
(see Fig. 20). More details on this example, as well as a
creative technique for considering asymmetric variations due
to tolerances, can be found in [68].

Fig. 19. Histogram of the yield analysis of the SM-based neuromodel around
the optimal yield solution with 500 outcomes.

Fig. 20. Fine model (Sonnet’s em) response (�) and SM-based neuromodel
response (—) at the optimal yield solution.

VI. TRANSIENT EM-DESIGN USING NEURAL NETWORKS

Although large-signal -parameters might be employed
to characterize the behavior of nonlinear microwave circuits
[70]–[72], other techniques are usually preferred to fully
describe the dynamic performance of such circuits [73]. In
the frequency domain, the two most popular techniques for
analyzing nonlinear microwave circuits are harmonic balance
and Volterra series. The steady-state time-domain response
can be easily obtained from the corresponding frequency-do-
main response by applying inverse Fourier transformation.
This allows us to realize steady-state time-domain design by
employing frequency-domain simulators.

If the transient response of the nonlinear circuit is an issue,
either measurements or direct time-domain simulators with non-
linear models must be employed. If neural-network techniques
are to be exploited in this case, more suitable paradigms than
feed-forward perceptrons should be used.

A neural network with nonlinear dynamic behavior can be
realized by adding feedback loops with some unit-delay ele-
ments to static multilayer perceptrons with nonlinear activation
functions, as in an RNN. Fig. 21 conceptually illustrates the
process of developing a neural dynamic model of a nonlinear
microwave circuit. Vector contains the input waveforms
evaluated at the current discrete time , while contains the
corresponding fine model output waveforms amplitudes. Banks
of unit delays are denoted by . Vector contains the design
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Fig. 21. Developing a neurodynamic model of a nonlinear microwave circuit.
An RNN is used to model the transient response of the microwave device. Banks
of unit delays are denoted by z . A nonlinear MLP with feedback forms the
basis of the RNN.

variables, as well as any other time invariant circuit parameter.
The free-parameters (weights, bias, etc.) of the feed-forward
MLP are adjusted during training, such that the RNN best ap-
proximates the fine model response in the region of interest. An
extension of the standard backpropagation algorithm, the back-
propagation through-time (BPTT) algorithm [74], is typically
used for training the RNN.

A macromodeling approach for nonlinear microwave circuits
using RNNs is proposed by Fang et al. [75], where macromodels
of an RF integrated circuit (RFIC) power amplifier and a Gilbert
cell mixer are successfully developed.

In addition to the typical issues that have to be considered for
training ANNs, there are two parameters that must be carefully
chosen while training RNNs, namely, the sampling cycle and
the number of unit-delay elements in each bank of delays (see
Fig. 21). The first one can be estimated from the highest fre-
quency of the input transient waveforms, while the second one
is more difficult to predict and it is usually determined heuristi-
cally, as in [75].

Following the same procedure as in [75], a macromodeling
example of a p-MOSFET transistor is developed in [76]. This
example also illustrates the eventual need of a separate RNN to
model very fast responses at the beginning of the simulation.
A comparison between the performance of standard neural net-
works (without feedback) and RNNs in transient-regime mod-
eling is described in [76], confirming the RNNs advantages for
dynamic systems.

An interesting ANN formulation for modeling nonlinear mi-
crowave circuits is realized in [77] and [78]. Here, the neu-
romodel, called the dynamic neural-network (DNN) model, is
developed as a reduced-order representation in state equations
form of the original circuit. The DNN model is trained with fre-
quency- or time-domain information. The training data used for
the examples in [77] and [78] is in the form of input–output har-
monic spectra (obtained from harmonic-balance simulations),
and the corresponding time-domain data is obtained by inverse
Fourier transformation. Training the DNN is implemented in
two stages: an initial training in the time domain, and a refine-

ment step in the frequency domain. Examples of dynamic mod-
eling of an amplifier, a mixer, and a combination of both to
simulate a direct broadcast satellite (DBS) receiver subsystem
are reported in [77], [78], where the DNNs are compared with
the corresponding original circuits (in both time and frequency
domains), showing excellent agreement, and an important re-
duction in simulation time. A similar approach is used in [79]
to develop time-domain neural models for embedded passives.
Since the training data used in [77] and [78] to develop the
neural models is in the steady-state regime (obtained from har-
monic-balance simulations within a finite frequency band), the
corresponding DNNs cannot, in general, for any kind of exci-
tation, reproduce the transient responses of the microwave cir-
cuit, but only the steady-state time domain responses. Never-
theless, given their general formulation based on reduced-order
state equations, DNNs are, in principle, capable of simulating
transient responses if appropriate training data is employed. A
more advanced technique is proposed in [80], where an adjoint
of the DNN along with a Lagrange formulation is used to fa-
cilitate the DNN training directly from transient data. Transient
modeling of nonlinearly terminated high-speed interconnects is
illustrated in [80].

Examples of time-domain optimization of microwave circuits
using ANNs (or RNNs) have not been reported in the litera-
ture. More research is also needed on the stability of RNNs
when used as models for microwave circuits (Lyapunov stability
theory, [15], [81]). This is related to the problem of choosing the
number of delay-unit elements mentioned above, which deter-
mines the order of the dynamic model. Especially important is
the stability of RNNs if they are used as computational models
in optimization.

VII. GLOBAL MODELING EXPLOITING ANNs

At sufficiently high frequencies, microwave and mil-
limeter-wave CAD tools require full-wave EM analysis of
MMICs to accurately predict the wave interactions and be-
havior of not only the passive structures, but also the active
devices. Usually, only the passive periphery around the active
device is characterized by a full-wave analysis, while the active
device is characterized by a lumped equivalent circuit whose
element values are provided by parameter extractions based
on measurements. When the active device is electrically large
(as in the case of wide-gate field-effect transistors), a lumped
equivalent circuit is no longer reliable since it cannot predict
the effects of possible standing waves along the device itself
[82].

On the other hand, simple analytical models based on the
drift–diffusion formulation were sufficiently accurate to sim-
ulate the electrical performance of the earlier semiconductor
devices. However, as semiconductor devices were scaled into
the submicrometer scenario, the assumptions underlying the
drift–diffusion model lost their validity, leading to the need of
full hydrodynamic models based on the Boltzmann’s transport
equations [83].

The so-called “global modeling” technique [84] aims at
unifying both the EM analysis of passive structures and the
semiconductor theory related to the active devices by coupling
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the Boltzman transport equations with Maxwell’s equations
using space–time discretization. The solution is computed on
a nonuniform grid to improve accuracy and convergence: a
coarse grid is used on the neutral zones far from the depletion
region, while a fine grid is used where high carrier-density
gradients are found (under the gate and in the active layer).
Since the mesh density in the active device region is much
higher than the one in the passive structures, this approach is
computationally very expensive and, thus far, unpractical for
direct use into commercial software. Time-domain diakoptics
[85] has been proposed to speed up this process.

The use of neural networks to speed up “global modeling”
for full-wave design of MMICs was proposed by Goasguen and
El-Ghazaly [86]. Here, the transistor is implemented in an ex-
tended finite-difference time-domain (FDTD) code, where the
nonlinearities of the active device are described by the ANN that
updates the circuit parameter values inside the FDTD mesh ac-
cording to the calculated EM field. The extended FDTD method
uses current–voltage sources to substitute the device in the cor-
responding cells of the FDTD grid. Lumped elements are also
included in the FDTD marching time algorithm (each lumped
element is distributed in the cells of the active region).

An MESFET was successfully simulated in [86] using this
method. By using the ANN, the computation time was dramat-
ically reduced with respect to the simulation time required by a
hydrodynamic model or complete global-modeling approach.

VIII. SOME FUTURE DIRECTIONS

Finally, an attempt to predict general future developments
of microwave design techniques using neural networks is pre-
sented here. These are suggested in addition to those specific is-
sues mentioned throughout the paper that require more research.

A. More Algorithmic On-Line Approaches to
EM-Based Design

Offline approaches to ANN-based design consist of devel-
oping a neuromodel from reliable data and using it as a fast and
accurate approximation of the actual microwave device for opti-
mization. We have seen that this can be realized in several ways.
Offline approaches afford many training, testing, and validating
data points obtained from fine model evaluations. In contrast,
online approaches to design should generate as few fine model
data points as possible, where local neuromodels (which could
be considered as “ANN-based surrogates”) are gradually im-
proved at each design iteration. We need more algorithms for on-
line ANN EM-based design. These algorithms should allow the
microwave engineer to design on a feasible interactive frame-
work, i.e., computationally efficient software engines must be
used. At the same time, the microwave engineer should not
be concerned with the typical ANN decisions (neural-network
topology, number of hidden layers, number of hidden neurons,
selection of training or testing data, etc.). All of these parameters
should be transparent to the user, who should only be concerned
with the microwave engineering aspects of the problem.

Devabhaktuni et al. [87] proposed an algorithm for knowl-
edge-based automatic model generation (KAMG), which imple-
ments in an automated fashion the development of some of the

neuromodeling techniques mentioned in this paper: the differ-
ence method, the PKI method, the KBNN approach, and the SM
neuromodeling technique. KAMG aims at generating very ac-
curate microwave neural models using the fewest possible fine
model data points. The KAMG algorithm exploits the adaptive
sampling technique [29], by which the region where the worst
training errors are found is further divided into smaller subre-
gions for additional training and validation data. KAMG is an
algorithm for modeling. The models generated by KAMG can
later be used for design. KAMG is then an offline approach to
ANN EM-based design. We still need an automated online de-
sign algorithm, as described above.

B. Integrated Transient- and Frequency-Domain ANN-Based
Design Approach

A number of innovative techniques for microwave design
have been described in the previous sections. All of them have
been developed and/or demonstrated either for the frequency or
transient domains. An integrated transient- and frequency-do-
main ANN-based design approach has not yet been reported.
Although it seems simple, the complexity of this task should
not be overlooked.

C. More ANN EM-Based Design Methods Exploiting
Circuit Models

Microwave engineers have been developing circuit models
of microwave structures for decades. These equivalent-circuit
models have been successfully used as vehicles for design in
countless practical microwave problems. They represent a rich
collection of knowledge the microwave community should not
abandon. The most successful ANN design techniques will be
those that exploit this knowledge more intelligently. Section III
describes a number of ANN design techniques that exploit cir-
cuit models to make more efficient use of the EM simulator
during the design process. By observing Figs. 4, 6, 7, 9, and 11,
it is clear that there might be several more ways to efficiently
combine the ANN and the fine and coarse models. New strate-
gies will certainly emerge.

IX. CONCLUSIONS

The relevant work in EM-based design and optimization
of microwave circuits exploiting ANNs has been reviewed.
Measurement-based design of microwave circuits using ANNs
has also been considered. The conventional microwave neural
optimization approach has been described. Advantages and
drawbacks of this strategy have been treated. Improvements of
this approach through segmentation, decomposition, hierarchy,
DoE, and clusterization have been considered. Innovative
strategies for ANN EM-based design that exploit knowledge
have been reviewed, including the difference method, PKI
method, KBNN, NSM optimization method, extended NSM
approach, and NISM optimization algorithm. ANN-based
design of microwave circuits using synthesis neural networks
or inverse neural models has been reviewed. Difficulties in
developing synthesis neural networks have been indicated.
Several cases of successful inverse modeling have been de-
scribed. Methods for EM-based statistical design using neural
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networks have been described. A relevant microwave problem
has illustrated the use of an NSM technique to efficient and ac-
curate yield optimization. The key issues in transient EM-based
design using neural networks have been described. Suitable
paradigms for approximating nonlinear dynamic behavior
have been mentioned such as an RNN and their corresponding
training techniques. The application of ANNs to speed up
global modeling for EM-based design of MMICs has been
briefly described. Finally, an attempt to predict some future
directions of ANN techniques for microwave design has been
realized.
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