

Simulation Methods for Electronic Circuits Assignment on Contents 2

February 2020

Dr. J. E. Rayas Sánchez

1) Apply the Tableau approach to analyze the generalized impedance converter shown below: (a) draw an oriented graph; (b) obtain the incidence matrix *A*; (c) obtain the matrices *Y*, *Z* and *W* from the circuit element definitions (assuming ideal Op-Amps); (d) assemble matrix *T*; (e) solve Tx = W' for *x* using Matlab or any other similar program; (f) calculate the impedance $Z_L = V_L/I_L$. Assume $R_1 = R_5 = 1 \text{ K}\Omega$, $R_2 = R_3 = 3.3 \text{ K}\Omega$, $C_4 = 1 \mu\text{F}$, and $V_L = 10 \text{ mV}$ at 1KHz (sinusoidal input). Assume zero initial conditions. From the value found for Z_L at 1 KHz, what is the equivalent inductance L_{eq} at that node at 1 KHz?

2) Apply the Nodal formulation to the circuit shown below: (a) draw an oriented graph; (b) obtain the incidence matrix A; (c) obtain the matrices Y and J from the circuit element definitions; (d) solve $AYA^{T}V_{n} = -AJ$ for V_{n} using Matlab at the following frequencies: 10 Hz, 50 MHz, 100 MHz, and 150 MHz. Assume $G_{1} = 100 \ \mu\text{S}$, $R_{L} = 50 \ \Omega$, $L_{1} = L_{2} = 60.78 \ \text{nH}$, $C_{1} = C_{3} = 10.16 \ \text{pF}$, $C_{2} = 36.02 \ \text{pF}$, $C_{4} = C_{5} = 14.87 \ \text{pF}$, and | $I_{i} \mid = 1 \text{mA}$ at all frequencies. Also assume zero initial conditions. Show V_{n} at the four frequencies in magnitude and phase (degrees). Plot $|A_{v}| = |V_{0}/V_{i}|$ versus frequency, from 10 Hz to 200 MHz (in linear scale).

3) Apply the Modified Nodal formulation to the Sallen-Key high-pass 2nd order active filter shown below: (a) draw an oriented graph; (b) obtain the incidence matrices A_1 and A_2 ; (c) obtain the matrices Y_2 , Z_2 , W_2 , Y_1 and J_1 from the circuit element definitions (assuming an ideal Op-Amp); (d) solve the MNA equation for V_n and I_2 using Matlab at 3000 frequency points from 10 Hz to 100 KHz in semi-logarithmic scale. Assume $R_A = 1.27$ K Ω , $R_B = 2.3$ K Ω , $G_1 = 1/R_A$, $G_2 = 1/R_B$, $C_1 = C_2 = 0.1$ µF, and $|V_i| = 1$ mV at all frequencies. Plot the magnitude (in dB) and phase (in degrees) of the voltage gain (V_{out}/V_{in}) versus frequency in semi-logarithmic scale (from 10 Hz to 100 KHz). Assume zero initial conditions.

4) For the circuit in problem 1: (a) obtain an MNA formulation using stamps (write down H and W by inspection); (b) Using Matlab solve HX = W for X; (c) calculate the impedance $Z_L = V_L/I_L$; (d) Compare these results with those obtained in problem 1, and check they are equivalent; (e) Plot the equivalent inductance L_{eq} versus frequency, from 10 Hz to 100 MHz (in linear scale).

5) For the buffered notch filter illustrated below: a) obtain an MNA formulation using stamps (write down *H* and *W* by inspection); (b) Using Matlab solve HX = W for *X*, from 1Hz to 120Hz, using 301 frequency points linearly distributed; (c) Plot the magnitude of the output voltage versus frequency in linear scale. Assume zero initial conditions and ideal Op-Amps. Take $R_1 = 19 \text{ K}\Omega$, $R_2 = 57.6 \text{ K}\Omega$, $R_3 = 464 \text{ K}\Omega$, $R_4 = 200 \Omega$, $R_5 = 4.8 \text{ K}\Omega$, $C_1 = C_2 = C_3 = 47 \text{ nF}$, and $|V_{in}| = 1 \text{ V}$ at all frequencies.

6) For the buffered notch filter of the previous problem: a) express your HX = W formulation into the form $(H_1+sH_2)X = W$; (b) using Matlab, obtain the transient response of the circuit from 0 to 500 ms by solving $H_2x' = w - H_1x$ for x with a Trapezoidal rule, assuming that the input signal is a pulse with 3 V of amplitude, 200 ms of pulse width, and a rise time and fall time of 5ms; (c) Plot versus time (from 0 to 500 ms) the input and output voltages, as well as the input current.

Submission deadline: March 4, 2020.