ITESO
Universidad Jesuita

Simulation Methods for Electronic Circuits Assignment on Contents 2

February 2020
Dr. J. E. Rayas Sánchez

1) Apply the Tableau approach to analyze the generalized impedance converter shown below: (a) draw an oriented graph; (b) obtain the incidence matrix \boldsymbol{A}; (c) obtain the matrices \mathbf{Y}, \mathbf{Z} and \boldsymbol{W} from the circuit element definitions (assuming ideal Op-Amps); (d) assemble matrix \boldsymbol{T}; (e) solve $\boldsymbol{T} \boldsymbol{x}=\boldsymbol{W}^{\prime}$ for \boldsymbol{x} using Matlab or any other similar program; (f) calculate the impedance $Z_{\mathrm{L}}=V_{\mathrm{L}} / I_{\mathrm{L}}$. Assume $R_{1}=R_{5}=1 \mathrm{~K} \Omega, R_{2}=R_{3}=$ $3.3 \mathrm{~K} \Omega, C_{4}=1 \mu \mathrm{~F}$, and $V_{\mathrm{L}}=10 \mathrm{mV}$ at 1 KHz (sinusoidal input). Assume zero initial conditions. From the value found for Z_{L} at 1 KHz , what is the equivalent inductance L_{eq} at that node at 1 KHz ?

2) Apply the Nodal formulation to the circuit shown below: (a) draw an oriented graph; (b) obtain the incidence matrix \boldsymbol{A}; (c) obtain the matrices \boldsymbol{Y} and \boldsymbol{J} from the circuit element definitions; (d) solve $\boldsymbol{A} \boldsymbol{Y} \boldsymbol{A}^{T} \boldsymbol{V}_{n}$ $=-\boldsymbol{A} \boldsymbol{J}$ for \boldsymbol{V}_{n} using Matlab at the following frequencies: $10 \mathrm{~Hz}, 50 \mathrm{MHz}, 100 \mathrm{MHz}$, and 150 MHz . Assume $G_{1}=100 \mu \mathrm{~S}, R_{L}=50 \Omega, L_{1}=L_{2}=60.78 \mathrm{nH}, C_{1}=C_{3}=10.16 \mathrm{pF}, C_{2}=36.02 \mathrm{pF}, C_{4}=C_{5}=14.87 \mathrm{pF}$, and $I_{i} \mid=1 \mathrm{~mA}$ at all frequencies. Also assume zero initial conditions. Show V_{n} at the four frequencies in magnitude and phase (degrees). Plot $\left|A_{\nu}\right|=\left|V_{o} / V_{i}\right|$ versus frequency, from 10 Hz to 200 MHz (in linear scale).

3) Apply the Modified Nodal formulation to the Sallen-Key high-pass $2^{\text {nd }}$ order active filter shown below: (a) draw an oriented graph; (b) obtain the incidence matrices \boldsymbol{A}_{1} and \boldsymbol{A}_{2}; (c) obtain the matrices $\boldsymbol{Y}_{2}, \boldsymbol{Z}_{2}, \boldsymbol{W}_{2}$, \mathbf{Y}_{1} and \boldsymbol{J}_{1} from the circuit element definitions (assuming an ideal Op-Amp); (d) solve the MNA equation for \boldsymbol{V}_{n} and \boldsymbol{I}_{2} using Matlab at 3000 frequency points from 10 Hz to 100 KHz in semi-logarithmic scale. Assume $R_{\mathrm{A}}=1.27 \mathrm{~K} \Omega, R_{\mathrm{B}}=2.3 \mathrm{~K} \Omega, G_{1}=1 / R_{\mathrm{A}}, G_{2}=1 / R_{\mathrm{B}}, C_{1}=C_{2}=0.1 \mu \mathrm{~F}$, and $\left|V_{i}\right|=1 \mathrm{mV}$ at all frequencies. Plot the magnitude (in dB) and phase (in degrees) of the voltage gain ($V_{\text {out }} / V_{\text {in }}$) versus frequency in semi-logarithmic scale (from 10 Hz to 100 KHz). Assume zero initial conditions.

4) For the circuit in problem 1: (a) obtain an MNA formulation using stamps (write down \boldsymbol{H} and \boldsymbol{W} by inspection); (b) Using Matlab solve $\boldsymbol{H} \boldsymbol{X}=\boldsymbol{W}$ for \boldsymbol{X}; (c) calculate the impedance $Z_{\mathrm{L}}=V_{\mathrm{L}} / I_{\mathrm{L}}$; (d) Compare these results with those obtained in problem 1, and check they are equivalent; (e) Plot the equivalent inductance $L_{\text {eq }}$ versus frequency, from 10 Hz to 100 MHz (in linear scale).
5) For the buffered notch filter illustrated below: a) obtain an MNA formulation using stamps (write down \boldsymbol{H} and \boldsymbol{W} by inspection); (b) Using Matlab solve $\boldsymbol{H} \boldsymbol{X}=\boldsymbol{W}$ for \boldsymbol{X}, from 1 Hz to 120 Hz , using 301 frequency points linearly distributed; (c) Plot the magnitude of the output voltage versus frequency in linear scale. Assume zero initial conditions and ideal Op-Amps. Take $R_{1}=19 \mathrm{~K} \Omega, R_{2}=57.6 \mathrm{~K} \Omega, R_{3}=464 \mathrm{~K} \Omega, R_{4}=$ $200 \Omega, R_{5}=4.8 \mathrm{~K} \Omega, C_{1}=C_{2}=C_{3}=47 \mathrm{nF}$, and $\left|V_{\text {in }}\right|=1 \mathrm{~V}$ at all frequencies.

6) For the buffered notch filter of the previous problem: a) express your $\boldsymbol{H} \boldsymbol{X}=\boldsymbol{W}$ formulation into the form $\left(\boldsymbol{H}_{1}+s \boldsymbol{H}_{2}\right) \boldsymbol{X}=\boldsymbol{W}$; (b) using Matlab, obtain the transient response of the circuit from 0 to 500 ms by solving $\boldsymbol{H}_{2} \boldsymbol{x}^{\prime}=\boldsymbol{w}-\boldsymbol{H}_{1} \boldsymbol{x}$ for \boldsymbol{x} with a Trapezoidal rule, assuming that the input signal is a pulse with 3 V of amplitude, 200 ms of pulse width, and a rise time and fall time of 5 ms ; (c) Plot versus time (from 0 to 500 ms) the input and output voltages, as well as the input current.

Submission deadline: March 4, 2020.

