Frequency Response

(Part 2)

The FET High-Frequency Model

 $C_{iss} = C_{gs} + C_{gd} \quad \text{(input capacitance)}$ $C_{oss} = C_{ds} + C_{gd} \quad \text{(output capacitance)}$ $C_{rss} = C_{gd} \quad \text{(reverse capacitance)}$

It is the frequency at which the magnitude of the shortcircuit current gain of the Common Source configuration becomes unity

$$f_T = \frac{g_m}{2\pi (C_{gs} + C_{gd})}$$

20 MHz $\leq f_T \leq$ 100 MHz for JFETs

100 MHz $\leq f_T \leq$ 2 GHz for MOSFETs

5 GHz $\leq f_T \leq$ 15 GHz for GaAs MESFETs

10 GHz $\leq f_T \leq$ 200 GHz for SiGe MOSFETs

The BJT High-Frequency Hybrid π Model

 $C_{\mu} = C_{ob} = C_{cb}$ (Collector-Base capacitance)

 $C_{\pi} = C_{eb}$ (Base-Emitter capacitance)

Dr. J.E. Rayas Sánchez

4

Typical Behaviour of C_{π}

5

Capacitancia de Difusión (repaso)

Capacitancia de la Región de Desértica (repaso)

Typical Behaviour of β

Dr. J.E. Rayas Sánchez

It is the frequency at which the magnitude of the short-circuit current gain of the common emitter configuration becomes unity

$$f_T = \frac{g_m}{2\pi (C_\pi + C_\mu)}$$

2 MHz $\leq f_T \leq$ 100 MHz for general purpose BJTs 1 GHz $\leq f_T \leq$ 10 GHz for high speed BJTs 1 GHz $\leq f_T \leq$ 50 GHz for HBTs and HEMTs

Typical Behaviour of f_T

High-Frequency Response of FET Amplifiers

Common Source

$$R_{gs} = r_{S} \qquad R_{gd} = \frac{v_{gs} - v_{o}}{v_{gs} / r_{S}} = r_{S} (1 - \frac{v_{o}}{v_{gs}})$$

$$v_{o} = -(\frac{v_{gs}}{r_{S}} + g_{m} v_{gs})(r_{o} || r_{L}) \qquad R_{gd} = r_{S} [1 + (r_{o} || r_{L})(g_{m} + 1 / r_{S})]$$

$$\omega_{H} \approx 1 / (R_{gs} C_{gs} + R_{gd} C_{gd})$$

High-Frequency Response of FET Amplifiers

High-Frequency Response of FET Amplifiers

13

High-Frequency Response of BJT Amplifiers

$$R_{\pi} = (r_{S} + r_{x}) || r_{\pi} \qquad R_{\mu} = \frac{v_{\pi} - v_{o}}{v_{\pi} / R_{\pi}} = R_{\pi} (1 - \frac{v_{o}}{v_{\pi}})$$
$$v_{o} = -(\frac{v_{\pi}}{R_{\pi}} + g_{m} v_{\pi})(r_{o} || r_{L}) \qquad R_{\mu} = R_{\pi} [1 + (r_{o} || r_{L})(g_{m} + 1 / R_{\pi})]$$
$$\omega_{H} \approx 1 / (R_{\pi} C_{\pi} + R_{\mu} C_{\mu})$$

High-Frequency Response of BJT Amplifiers

Common Base

It can be shown that

High-Frequency Response of BJT Amplifiers

Common Collector

It can be shown that

$$R_{\pi} = r_{\pi} \| \frac{r_{x} + r_{S} + (r_{L} \| r_{o})}{1 + g_{m}(r_{L} \| r_{o})} \qquad R_{\mu} = r_{\pi} \| \frac{r_{L} + r_{S} + r_{x}}{1 + g_{m}(r_{L} + r_{S} + r_{x})}$$
$$\omega_{H} \approx 1/(R_{\pi}C_{\pi} + R_{\mu}C_{\mu})$$

Comparison of Low-Frequency FET Responses

Comparison of Low-Frequency BJT Responses

	R_{C_B}	R_{C_E}	$R_{C_{C}}$
CE	$R_{S} + (R_{B1} R_{B2} r_{\pi})$	$R_{E} \ \frac{r_{\pi} + (R_{S} \ R_{B1} \ R_{B2})}{\beta + 1}$	$R_L + (R_C \parallel r_o)$
CB	$R_{B1} \ R_{B2} \ [r_{\pi} + (1 + \beta)(R_E \ R_S)]$	$R_{S} + R_{E} \parallel r_{\pi} \parallel 1/g_{m}$	$R_L + (R_C \parallel r_o)$
CC	$R_{S} + R_{B1} R_{B2} [r_{\pi} + (1 + \beta)(R_{E} R_{L})]$	$R_{L} + R_{E} \parallel \frac{r_{\pi} + (R_{S} \parallel R_{B1} \parallel R_{B2})}{\beta + 1}$	$R_C \parallel [r_o + (R_E \parallel R_L)]$
Dr. J.E. Rayas Sánchez		$\omega_L \approx \frac{1}{R_{C_B}C_B} + \frac{1}{R_{C_E}C_B}$	$-+\frac{1}{R_{C_c}C_c}$

Comparison of High-Frequency FET Responses

	R_{gs}	R_{gd}
CS	r_{s}	$r_{S}[1+(r_{o} r_{L})(g_{m}+1/r_{S})]$
CG	$r_{S} \parallel \frac{1}{g_{m}}$	$r_o \parallel r_L$
CD	$\frac{r_L + r_S}{1 + g_m(r_L + r_S)}$	r_{s}

 $\omega_{H} \approx 1/(R_{gs}C_{gs} + R_{gd}C_{gd})$

Comparison of High-Frequency BJT Responses

	R_{π}	R_{μ}
CE	$(r_S + r_x) \parallel r_{\pi}$	$R_{\pi}[1+(r_{o} r_{L})(g_{m}+1/R_{\pi})]$
СВ	$r_{\pi} \parallel \frac{r_x + r_S}{1 + g_m r_S}$	$r_L \parallel (r_o + r_x \parallel r_S)$
CC	$r_{\pi} \parallel \frac{r_{x} + r_{s} + (r_{L} \parallel r_{o})}{1 + g_{m}(r_{L} \parallel r_{o})}$	$r_{\pi} \parallel \frac{r_L + r_S + r_x}{1 + g_m (r_L + r_S + r_x)}$

 $\omega_{H} \approx 1/(R_{\pi}C_{\pi} + R_{\mu}C_{\mu})$

Miller's Theorem

Miller Effect

Common Source

 $R_{gd} = r_{S}[1 + (r_{o} || r_{L})(g_{m} + 1/r_{S})]$

Common Emitter r_{S} $r_{L} \leq v_{o}^{+}$ v_{i}^{+} v_{i}^{-} v_{o}^{-}

 $R_{\mu} = R_{\pi} [1 + (r_o \parallel r_L)(g_m + 1/R_{\pi})]$

The Cascode Configuration

The Cascode Configuration (cont)

The Cascode Amplifier at High Frequencies

The Cascode Amplifier at High Frequencies

The Cascode Configuration

Frequency Response of a Differential Amplifier

Cascode Differential Amplifier

Hybrid Microwave Integrated Circuits

Hybrid Microwave Integrated Circuits (cont)

M. Pozar (1998), Microwave Engineering. Amherst, MA: John Wiley and Sons.

Monolithic Microwave Integrated Circuits

M. Pozar (1998), Microwave Engineering. Amherst, MA: John Wiley and Sons.

Active Device Models at Microwave Frequencies

