
IMM
DEPARTMENT OF MATHEMATICAL MODELLING

Technical University of Denmark
DK-2800 Lyngby – Denmark

J. No. H69
23.8.1999

UNCONSTRAINED
OPTIMIZATION

Poul Erik Frandsen, Kristian Jonasson

Hans Bruun Nielsen, Ole Tingleff

LECTURE NOTE

IMM-LEC-2

IMM

Abstract

This lecture note is intended for use in the course 04212 Optimization

and Data Fitting at the Technincal University of Denmark. It covers

about 25% of the curriculum. Hopefully, the note may be useful also

to interested persons not participating in that course.

The aim of the note is to give an introduction to algorithms for un-

constrained optimization. We present Conjugate Gradient, Damped

Newton and Quasi Newton methods together with the relevant theo-

retical background.

The reader is assumed to be familiar with algorithms for solving

linear and nonlinear system of equations, at a level corresponding to

an introductory course in numerical analysis.

The algorithms presented in the note appear in any good pro-

gram library, and implementations can be found via GAMS (Guide

to Available Mathematical Software) at the Internet address

http://gams.nist.gov

The examples in the note were computed in Matlab. The pro-

grams are available via

http://www.imm.dtu.dk/�hbn/software.html

Contents

1. Introduction :5

1.1. Conditions for a Local Minimizer : 8

2. Descent Methods : 13

2.1. Fundamental Structure of a Descent Method : : : : : : : : : : : :15

2.2. Descent Directions : 17

2.3. Descent Methods with Line Search : 19

2.4. Descent Methods with Trust Region : 24

2.5. Soft Line Search :26

2.6. Exact Line Search :30

3. The Steepest Descent Method : 32

4. Conjugate Gradient Methods : 35

4.1. Quadratic models : 37

4.2. Structure of a Conjugate Gradient Method : : : : : : : : : : : : : 38

4.3. The Fletcher{Reeves Method : 41

4.4. The Polak{Ribi�ere Method : 41

4.5. Convergence Properties: :43

4.6. Other Methods and further reading :44

4.7. The CG Method for Linear Systems : 44

4.8. Implementation :: 45

5. Newton-Type Methods : 48

5.1. Newton's Method : 48

5.2. Damped Newton Method :53

5.3. Quasi{Newton Methods : 60

5.4. Quasi{Newton with Updating Formulae : : : : : : : : : : : : : : : : 61

5.5. The Quasi{Newton Condition : 63

5.6. Broyden's Rank-One Formula : 64

5.7. Symmetric Updating : 66

5.8. Preserving Positive De�niteness : 67

5.9. The DFP Formula: :68

5.10. The BFGS Formulae : 71

5.11. Quadratic Termination : 73

5.12. Implementation of a Quasi{Newton Method : : : : : : : : : : : : 74

Appendix :79

References : 83

Index :85

1. Introduction

In this lecture note we shall discuss numerical methods for the solu-

tion of the optimization problem: For a real function of several real

variables we want to �nd an argument vector which corresponds to a

minimal function value:

The Optimization Problem

Find x� = argminxf(x) ; where f : IRn 7! IR

(1.1)

The function f is called the objective function or cost function and x�

is the minimizer.

In some cases we want a maximizer of a function. This is easily

determined if we �nd a minimizer of the function with opposite sign.

Optimization as in (1.1) plays a very important role in many

branches of science and applications: economics, operations research,

network analysis, optimal design of mechanical or electrical systems,

to mention but a few.

Example 1.1. Here we consider functions of one variable. The function

f(x) = (x� x�)
2

has one, unique minimizer, x�, see Figure 1.1.

Figure 1.1: y = (x� x�)2

One minimizer.

X

Y

x

*

1. Introduction 6

The function f(x) = �2 cos(x� x�) has in�nitely many minimizers:

x = x� + 2p� ; where p is an integer; see Figure 1.2.

X

Y

Figure 1.2: y = �2 cos(x� x�). Many minimizers.

The function f(x) = 0:015(x � x�)2 � 2 cos(x � x�) has a unique

global minimizer, x�. Besides that, it also has several socalled local

minimizers, each giving the minimal function value inside a certain

region, see Figure 1.3.

X

Y

x*

Figure 1.3: y = 0:015(x� x�)2 � 2 cos(x� x�)

One global minimizer and many local minimizers.

The ideal situation for optimization computations is that the ob-

jective function has a unique minimizer. We call this the global mini-

mizer.
In some cases the objective function has several (or even in�nitely

many) minimizers. In problems like this it may be su�cient for us to

�nd one of these minimizers.

In many objective functions from applications we have a global

minimizer and several local minimizers. It is very di�cult to develop

methods which can �nd the global minimizer with certainty in this

situation. Methods for global optimization are very complicated and

outside the scope of this note.

7 1. Introduction

The methods described here can �nd a local minimizer for the

objective function. When a local minimizer has been discovered, we

do not know whether it is a global minimizer or one of the local

minimizers. We cannot even be sure that our optimization method

will �nd the local minimizer closest to the starting point. In order to

explore several local minimizers we can try several runs with di�erent

starting points, or better still examine intermediate results produced

by a global minimizer.

We end this section with an example meant to demonstrate that

optimization methods based on too primitive ideas may be dangerous.

Example 1.2. We want the global minimizer of the function

f(x) = (x1 + x2 � 2)2 + 100(x1 � x2)
2 :

The idea (which we should not use) is the following:

\Make a series of iterations. In each iteration we keep one of the vari-

ables �xed and seek a value of the other variable so as to minimize

the f -value". In Figure 1.4 we show the level curves or contours of f ,

i.e. curves consisting of positions with the same f -value. We also show

the �rst few iterations.

Figure 1.4: The Method of

Alternating Variables fails to

determine the minimizer of a

quadratic

X
1

X
2

x
0

After some iterations the steps begin to decrease rapidly in size. They

can become so small that they do not inuence the x-values, because

these are represented with a �nite precision in the computer, and the

progress stops completely. In many cases this happens far away from

the solution. We say that the iteration is caught in Stiefel's cage.

1.1. Conditions for a Local Minimizer 8

The \method" is called the method of alternating variables and it is a

classical example of a dangerous method, a method we must avoid.

1.1. Conditions for a Local Minimizer

A local minimizer for f is an argument vector giving the smallest

function value inside a certain region, de�ned by " :

De�nition

x� is a local minimizer for f : IRn 7! IR

()

f(x�) � f(x) if kx� � xk � " (" > 0)

(1.2)

Most objective functions, especially those with several local min-

imizers, contain local maximizers and other points which satisfy a

necessary condition for a local minimizer. The following theorems

help us �nd such points and distinguish the local minimizers from the

irrelevant points.

We assume that f has continuous partial derivatives of second

order. The �rst order Taylor series for a function of several vari-

ables gives us an approximation to the function value at a point x+h

neighbouring x,

f(x + h) = f(x) + h>f 0(x) + O(khk2) ; (1.3)

where f 0(x) is the gradient of f , a vector containing the �rst partial

derivatives,
f 0(x) �

2
66664

@f
@x1

(x)

...
@f

@xn
(x)

3
77775 : (1.4)

9 1. Introduction

We only consider vectors h with khk so small that the last term in

(1.3) is negligible compared with the middle term.

If our point x is a local minimizer it is not possible to �nd an h

so that f(x+h) < f(x) with khk small enough. This together with

(1.3) is the basis of

Theorem 1.1

The Necessary Condition for a Local Minimum

x� is a local minimizer for f : IRn 7! IR

=)

f 0(x�) = 0

The local minimizers are among the points with f 0(x) = 0. They

have a special name:

De�nition

xs is a stationary point for f () f 0(xs) = 0

(1.5)

The stationary points are the local maximizers, the local minimiz-

ers and \the rest". To distinguish between them, we need one extra

term in the Taylor series. This is, provided that f has continuous

third derivatives,

f(x + h) = f(x) + h>f 0(x) + 1
2
h>f 00(x)h+O(khk3) ; (1.6)

where the Hessian matrix of function f is a matrix containing the

second partial derivatives of f :

f 00(x) �

�
@2f

@xi@xj
(x)

�
: (1.7)

Note that this is a symmetric matrix. For a stationary point (1.6)

takes the form

1.1. Conditions for a Local Minimizer 10

f(xs + h) = f(xs) +
1
2
h>f 00(xs)h+ O(khk3) : (1.8)

If the 2nd term is positive for all h we say that the matrix f 00(xs) is

positive de�nite (cf. Appendix A, which also has tools for checking

de�niteness). Further, we can take khk so small that the error term

is negligible, and it follows that xs is a local minimizer.

Theorem 1.2

The Su�cient Condition for a Local Minimum

Assume that xs is a stationary point, see De�nition (1.5)

and that f 00(xs) is positive de�nite

=)

xs is a local minimizer

The Taylor series (1.6) is also the basis of the proof of the follow-

ing

Corrollary 1.3

Assume that xs is a stationary point and that f 00(x) is positive

semide�nite when x is in a neighbourhood of xs

=)

xs is a local minimizer

The local maximizers and \the rest", which we call saddle points,

can be characterized by the following corollary, also derived from (1.6).

11 1. Introduction

Corrollary 1.4

Assume that xs is a stationary point and that f 00(xs) 6= 0. Then

1) f 00(xs) is positive de�nite: see Theorem 1.2.

2) f 00(xs) is positive semide�nite:

) xs is a local minimizer or a saddle point.

3) f 00(xs) is neither de�nite nor semide�nite:

) xs is a saddle point.

4) f 00(xs) is negative semide�nite:

) xs is a local maximizer or a saddle point.

5) f 00(xs) is negative de�nite:

) xs is a local maximizer.

If f 00(xs)=0, then we need higher order terms in the Taylor series

in order to �nd the local minimizers among the stationary points.

Example 1.3. We consider functions of two variables. Below we show the

variation of the function value near a local minimizer (Figure 1.5a), a

local maximizer (Figure 1.5b) and a saddle point (Figure 1.5c). It is a

characteristic of a saddle point that there exists one line through xs,

with the property that if we follow the variation of the f -value along

the line, this \looks like" a local minimum, whereas there exists another

line through xs, \indicating" a local maximizer.

a) minimum b) maximum c) saddle point

Figure 1.5: With a 2-dimensional x we see surfaces

z = f(x) near a stationary point

1.1. Conditions for a Local Minimizer 12

If we study the level curves of our function, we see curves approximately

like concentric ellipses near a local maximizer or a local minimizer (Fig-

ure 1.6a), whereas the saddle points exhibit the \hyperbolae" shown in

Figure 1.6b.

x*

X
1

X
2

a) maximum or minimum
x*

X
1

X
2

b) saddle point

Figure 1.6: The contours of a function near a stationary point

Finally, the Taylor series (1.6) is also the basis for the following:

Theorem 1.5

Second Order Necessary Condition

x� is a local minimizer

=)

f 00(x�) is positive semide�nite

2. Descent Methods

All the methods in this lecture note are iterative methods. They pro-

duce a series of vectors

x0; x1; x2; : : : ; (2.1a)

which in most cases converges under certain mild conditions. We

want the series to converge towards x�, a local minimizer for the

given objective function f : IRn 7! IR , i.e.

xk ! x� for k!1 ; (2.1b)

where x� is a local minimizer, see de�nition (1.2).

In all (or nearly all) the methods there are measures which enforce

the descending property

f(xk+1) < f(xk) : (2.2)

This prevents convergence to a maximizer and also makes it less prob-

able that we get convergence to a saddle point, see Chapter 1. We

talk about the global convergence properties of a method, i.e. conver-

gence when the iteration starts in a position, x0, which is not close to

a local minimizer, x�. We want our method to produce iterates that

move steadily towards a neighbourhood of x�. For instance, there

are methods for which it is possible to prove that any accumulation

point (i.e. limit of a subseries) of fxkg is a stationary point, see (1.5),

i.e. the gradients tend to zero:

f 0(xk)! 0 for k!1 : (2.3)

2. Descent Methods 14

This does not exclude convergence to a saddle point or even a

maximizer, but the descending property (2.2) prevents this in practice.

In this \global part" of the iteration we are satis�ed if the current

errors do not increase except for the very �rst steps. Letting fekg

denote the errors,

ek � x� � xk ;

the requirement is

kek+1k < kekk for k > K :

In the �nal stages of the iteration where the xk are close to x
� we

expect faster convergence. The local convergence results tell us how

quickly we can get a result which agrees with x� to a desired accuracy.

Some methods have linear convergence, i.e.

kek+1k � c1kekk with c1< 1 and xk close to x� : (2.4)

It is more desirable to have higher order of convergence, for in-

stance quadratic convergence (convergence of order 2):

kek+1k � c2kekk
2 with c2> 0 and xk close to x� : (2.5)

Only a few of the methods used in the applications achieve

quadratic �nal convergence. On the other hand we want better than

linear �nal convergence. Many of the methods used in practice have

superlinear convergence:

kek+1k

kekk

! 0 for k!1 : (2.6)

This is better than linear convergence though (normally) not as good

as quadratic convergence.

15 2. Descent Methods

Example 2.1. Consider 2 iterative methods, one with linear and one with

quadratic convergence. At a given step they have both achieved the

result with an accuracy of 3 decimals:

kekk < 0:001

They have c1 = c2 =

1
2

in (2.4) and (2.5) respectively. If we want an

accuracy of 12 decimals, the iteration with quadratic convergence will

only need 2 more steps, whereas the iteration with linear convergence

will need about 30 more steps,
�
1
2

�30 ' 10�9.

2.1. Fundamental Structure of a Descent Method

Example 2.2. This is a 2-dimensional minimization example. A tourist

has lost his way in a hilly country. It is a foggy day so he cannot see

far and he has no map. He knows that his rescue is at the bottom of a

nearby valley. As tools he has an altimeter, a compass and his sense of

balance together with a spirit level which can tell him about the slope

of the ground locally.

In order not to walk in circles he decides to use straight strides, i.e.

with constant compass bearing. From what his feet tell him about the

slope locally he chooses a direction and walks in that direction as long

as his altimeter tells him that he gets downhill. He stops when his

altimeter indicates increasing altitude, or his feet tell him that he is on

an uphill slope.

Now he has to decide on a new direction and he starts his next stride.

Let us hope he is saved in the end.

The pattern of events in the example above is the basis of the

algorithms for descent methods:

2.1. Fundamental Structure of a Descent Method 16

Algorithm 2.7. Descent Method

begin
k := 0; x := x0; found := false fStarting pointg

repeat

hdh := search direction(x) fFrom x and downhill g

if no such h exists

found := true fx is stationaryg

else
� := line search(x;hdh) ffrom x in direction hdhg

x := x+ �hdh fnew position g

k := k + 1

found := update(found)

until found or k>kmax

end f. . . of descent algorithm g

The search direction must be a descent direction. Then we are able

to gain a smaller value of f(x) by choosing an appropriate walking

distance, and thus we can satisfy the descending condition (2.2). For

details, see Sections 2.2 and 2.5 { 2.6.

As stopping criterion we would like to use the ideal criterion that

the current error is su�ciently small

kekk < �1 :

Another ideal condition would be that the current value of f(x) is

close enough to the minimal value, i.e.

f(xk) � f(x
�) < �2 :

Both conditions reect the convergence xk!x�. They cannot be used

in real applications, however, because x� and f(x�) are not known.

Instead we have to use approximations to these conditions:

kxk+1�xkk < "1 or f(xk)�f(xk+1) < "2 : (2.8)

17 2. Descent Methods

We must emphasize that even if (2.8) is ful�lled with small "1 and "2,

we cannot be sure that kekk or f(xk)�f(x
�) are small.

The other type of convergence mentioned at the start of this chap-

ter is f 0(xk)!0 for k!1. This can be reected in the stopping

criterion
kf 0(xk)k < "3 ; (2.9)

which is included in many implementations of descent methods.

There is a good way of using the property of converging function

values. The Taylor series (1.6) of f at x� is

f(xk) ' f(x�) + (xk � x�)>f 0(x�) + 1
2
(xk � x�)>f 00(x�)(xk � x�) :

Now, if x� is a local minimizer, then f 0(x�)=0 and H�� f 00(x�) is

positive semide�nite, see Chapter 1. This gives us

f(xk)� f(x
�) ' 1
2
(xk � x
�)>H�(xk � x�) ;

so the stopping criterion could be

1
2
(xk+1�xk)
>Hk(xk+1�xk) < "4 with xk ' x� : (2.10)

Here xk�x� is approximated by xk+1�xk and H� is approximated by

Hk = f 00(xk).

2.2. Descent Directions

Now we come to the important question: \How do we �nd a direction

which brings us downhill, a descent direction ?" A necessary condition

is, that if we move from the current position to a neighbouring point

in the given direction we get into a position with a smaller function

value.

Example 2.3. Let us return to our tourist who is lost in the fog in a

hilly country. By experimenting with his compass he can �nd out that

\half" the compass bearings give strides that start uphill and that the

2.2. Descent Directions 18

\other half" gives strides that start downhill. Between the two halves

are two strides which start o� going neither uphill or downhill. These

form the tangent to the level curve corresponding to his position.

The Taylor series (1.3) gives us a �rst order approximation to the

function value in a neighbouring point to x in direction h:

f(x+�h) = f(x) + �h>f 0(x) + O(�2); with � > 0 :

If � is not too large, then the �rst two terms will dominate over the

last:

f(x + �h) ' f(x) + �h>f 0(x) :

The sign of the term �h>f 0(x) decides whether we start o� uphill or

downhill. In our space IRn we consider a hyperplane H through the

current position and orthogonal to �f 0(x),

H = fx + h j h>f 0(x) = 0g :

This hyperplane divides the space in an \uphill" halfspace and a

\downhill" halfspace. The halfspace we want has the vector �f 0(x)

pointing into it. Figure 2.1 gives the situation in IR3.

Figure 2.1: IR3

divided into a

\downhill" and an

\uphill" halfspace.

��	
6-

X1

X2

X3

HH
HH

HH��

HH
HH

HH
HH

H

H
�

�
�

�
���

��
���1

x

�f 0(x)
h

�

19 2. Descent Methods

We now de�ne a descent direction. This is a \downhill" direction,

i.e. it is inside the \good" halfspace:

De�nition

h is a descent direction from x () h>f 0(x) < 0

(2.11)

A method based on condition (2.11) is a descent method.

In Figure 2.1 we have a descent direction h, satisfying (2.11). We

introduce the angle between h and �f 0(x)

� = 6 (h;�f 0(x)) with cos � =

�h>f 0(x)

khk � kf 0(x)k

: (2.12)

We state a new condition on this angle,

De�nition

An absolute descent method has search directions hk,

which satisfy

� < �
2
� �

for all k, with � > 0 independent of k

(2.13)

The discussion above is concerned with the geometry in IR3, and

is easily seen to be valid also in IR2. If the dimension n is larger than

3, we call � \the pseudoangle between h and �f 0(x)". In this way we

can use (2.12) and (2.13), for all n� 2.

The restriction that �must be constant in all the steps is necessary

for the global convergence result we give in the next section.

2.3. Descent Methods with Line Search

When a descent direction has been determined, we have to decide

how long the step in this direction should be. We perform a line

search as indicated in Algorithm 2.7. First, we must be sure that the

descending condition (2.2) is satis�ed. Next, we must guard against

2.3. Descent Methods with Line Search 20

the step being so short that our gain in function value diminishes. We

study the variation of the objective function f along the direction h

from the current position x

'(�) = f(x+�h); with �xed x and h :

From the Taylor series (1.6) it follows that

'(�) = f(x) + �h>f 0(x) + 1
2
�2h>f 00(x)h+O(�3)

and

'0(0) = h>f 0(x) : (2.14)

In Figure 2.2 we show an example of the variation of '(�) with

h as a descent direction. The descending condition (2.2) implies that

we want to stop the line search with a value �s so that '(�s) < '(0).

According to (2.14) have '0(0) < 0, but the �gure shows that there is

a risk that, if � is taken too large, then '(�) > '(0).

α

Y
y = φ(0) y = φ(α)

Figure 2.2: Variation of the cost function along the search line

To ensure that we get a useful decrease in f-value, we stop the

search with a value �s which gives a '-value below that of the line

y = �(�), indicated in Figure 2.3. This line goes through the starting

point and has a slope which is a fraction of the slope of the starting

tangent to the '-curve:

21 2. Descent Methods

'(�s) � �(�s) ; where

�(�) = '(0) + % � '0(0) � � with 0<%< 0:5 :

(2.15)

The parameter % is normally small, 0:001 can be a good value. Con-

dition (2.15) is needed in some convergence proofs.

We also want to ensure that the �-value is not chosen too small.

In Figure 2.3 we indicate a requirement, ensuring that the local slope

is greater than the starting slope. More speci�cly,

'0(�s) � � � '0(0) with % < � < 1 : (2.16)

α

Y
y = φ(0) y = φ(α)

y = λ(α)

acceptable points

Figure 2.3: Acceptable points according to

criteria (2.15) and (2.16)

Descent methods with line search governed by (2.15) plus (2.16)

are normally convergent. Fletcher (1987), pp 26{30, has the proof of

Theorem 2.1 below.

A possible outcome is that the method �nds a stationary point (xk

with f 0(xk)=0) and then it stops. Another possibility is that f(x)

is not bounded from below for x in the level set fx j f(x)< f(x0)g

and the method may \fall into the hole". If neither of these occur,

the method converges towards a stationary point. The method being

a descent method often makes it converge towards a point which is

not only a stationary point but also a local minimizer.

2.3. Descent Methods with Line Search 22

Theorem 2.1

Consider an absolute descent method following Algorithm 2.7

with search directions according to (2.12) and (2.13) and with

line search controlled by (2.15) and (2.16).

If f 0(x) exists and is uniformly continuous on the level set

fx j f(x) < f(x0)g, then for k!1:

either f 0(xk) = 0 for some k

or f(xk) ! �1

or f 0(xk) ! 0

A line search as described above is often called a soft line search

because of its liberal stopping criteria, (2.15) and (2.16). In contrast

to this there are variants which we call \exact line searches", exact

in the sense that we seek an approximation to a local minimizer for

'(�), i.e.
�e = argmin�>0f(x+�h) for �xed x and h : (2.17)

A necessary condition on �e is '0(�e) = 0 . We have '0(�) =

h>f 0(x+�h) and this shows that either f 0(x+�eh)=0, which is

a perfect result (we have found a stationary point for f), or if

f 0(x+�eh) 6=0, then '0(�e)= 0 leads to:

f 0(x+�eh) ? h : (2.18)

This shows that the exact line search will stop at a point where the

local gradient is orthogonal to the search direction.

Example 2.4. A \divine power" with a radar set follows the movements of

our wayward tourist. He has decided to continue in a given direction,

until his feet or his altimeter tells him that he starts to go uphill.

The "divine power" can see that he stops where the given direction

is tangent to a local contour. This is equivalent to the orthogonality

mentioned in (2.18).

23 2. Descent Methods

Figure 2.4: An exact line search

stops at y = x+�eh, where the

local gradient is orthogonal to

the search direction

X
1

X
2

x
y

h

−f’(y)

For further details about line searches, see Sections 2.5 { 2.6.

There are several disadvantages to exact line search. Firstly, it is

more time consuming than soft line search. It contains iterative re-

�nement of an approximation to the minimizer along our direction.

This can take quite a lot of time. Even if an exact line search �nds

the solution in its �rst try, in some cases it will perform several steps

of computation in order to check its stopping criterion. Its second

disadvantage is shown in the next example.

Example 2.5. Our wayward tourist has determined to go by exact line

searches. Walking in the given direction towards the lowest point in

that direction, our tourist may feel a steep descent across his path.

This will make him want to start on a new search direction before he

arrives at the bottom in his �rst direction.

The example hinted that it is often a good idea to use a step

(in the given direction) which is shorter than the step resulting from

an exact line search. This is one of the reasons behind the class of

methods given in the next section, methods with no line searches.

2.4. Descent Methods with Trust Region 24

2.4. Descent Methods with Trust Region

The methods in this note produce series of steps leading from the

starting position to the �nal result, we hope. In the descent methods

of this chapter and in Newton's method of Chapter 5, the directions

of the steps are determined by the properties of f(x) at the current

position. Similar considerations lead us to the trust region methods,

where the iteration steps are determined from the properties of a

model of the objective function inside a given region. The size of the

region is modi�ed during the iteration.

The Taylor series (1.3) provides us with a linear approximation to

f near a given x:

f(x + h) ' q(h) with q(h) = f(x) + h>f 0(x) : (2.19)

Likewise we can obtain a quadratic approximation to f from the Tay-

lor series (1.6)

f(x + h) ' q(h)

with q(h) = f(x) + h>f 0(x) + 1
2
h>f 00(x)h :

(2.20)

In both case q(h) is a poor approximation to f(x+h) unless khk

is su�ciently small. These considerations lead us to determine the

new iteration step as the solution to the following model problem:

htr = argmin
h2Dfq(h)g

where D = fh j khk � 4g; 4 > 0 :

(2.21)

The region D is called the trust region and q(h) is given by (2.19) or

(2.20).
We use h=htr as a candidate to our next step, and reject h, if

f(x+h) � f(x). The gain in cost function value controls the size of

the trust region for the next step: The gain is compared with the gain

predicted by the approximation function, and we introduce the gain

factor :

25 2. Descent Methods

r =
f(x) � f(x + h)

q(0)� q(h)

: (2.22)

When r is small our approximation agrees poorly with f , and when

it is large the agreement is good. Thus we let the gain factor regulate

the size of the trust region for the next step (or our next attempt for

this step when r � 0 and h is rejected).

We now have the basis for

Algorithm 2.23. Descent Method with Trust Region

begin
k := 0; x := x0; 4 :=40; found := false fstarting pointg

repeat

k := k+1; htr := Solution of model problem (2.21)

r := gain factor (2.22)

if r > 0:75 fstep very goodg

4 := 2 � 4 flarger trust regiong

if r < 0:25 fstep not very goodg

4 :=4=3 fsmaller trust regiong

if r > 0 freject step if r � 0g

x := x+ htr

Update found fstopping criteria, e.g. (2.8) and (2.9)g

until found or k>kmax

end
The numbers in the algorithm, 0:75, 2, 0:25 and 1=3 have been

chosen from practical experience. The method is not very sensitive

to minor changes in these values, but in the expressions 4 := p1�4

and 4 := 4=p2 the numbers p1 and p2 must be chosen so that the

4-values cannot oscillate.

There are versions of the trust region method where \r<0:25" ini-

tiates an interpolation between x and x+h based on known values of

f and f 0, and/or \r>0:75" leads to an extrapolation along the direc-

tion h, a line search actually. Actions like this can be rather costly,

2.5. Soft Line Search 26

and in his book, Fletcher (1987), p. 96, claims that the improvements

in performance may be marginal. In the same reference there are

theorems about the global performance of methods like 2.23.

2.5. Soft Line Search

Many researchers in optimization have proved their inventiveness by

producing new line search methods or modi�cations to known meth-

ods. What we present here are useful combinations of ideas of di�erent

origin. The description is based on Madsen (1984).

In the early days of optimization the exact line searches were

dominant. Now, the soft line searches are used more and more, and

we rarely see new methods presented which require exact line searches.

An advantage of soft line search over exact line search is that it is

the faster of the two. If the �rst guess on the step length is a rough ap-

proximation to the minimizer along the given direction, the linesearch

will terminate immediately if some mild criteria are satis�ed. The re-

sult of the exact line search is normally a good approximation to the

result, and this can make descent methods with exact line search �nd

the local minimizer in fewer iterations than used by a descent method

with soft line search. Still, the extra time spent in each line search

often makes the descent method with exact line search a loser.

If we are at the start of the iteration with a descent method, where

x is far from the solution x�, it does not matter much that the result

of the soft line search is only a rough approximation to the result; this

is another point in favour of the soft line search.

The purpose of the algorithm is to �nd �s, an acceptable argument

for the function

'(�) = f(x + �h) :

27 2. Descent Methods

The acceptability is decided by the criteria (2.15),

'(�s) � �(�s) ; where

�(�) = '(0) + % � '0(0) � � with 0<%< 0:5

(2.24a)

and (2.16),
'0(�s) � � � '0(0) with % < � < 1 : (2.24b)

These two criteria express the demands that �s must be su�ciently

small to give a useful decrease in the objective function, and su�-

ciently large to ensure that we have left the starting tangent of the

curve y = '(�) for � � 0; cf. Figure 2.3.

The algorithm has two parts. First we �nd an interval [a; b] that

contains acceptable points, see �gure 2.5:

α

Y
y = φ(0) y = φ(α)

y = λ(α)

acceptable pointsa b

Figure 2.5: Interval [a; b] containing acceptable points

In the second part of the algorithm we successively reduce the

interval: We �nd a point � in the strict interior of [a; b]. If both

conditions (2.24) are satis�ed by this �-value, then we are �nished

(�s=�). Otherwise, the reduced interval is either [a; b] := [a; �] or

[a; b] := [�; b], where the choice is made so that the reduced [a; b] con-

tains acceptable points.

2.5. Soft Line Search 28

Algorithm 2.25. Soft Line Search

begin

if '0(0) � 0 f1�g

� := 0

else
k := 0; := � � '0(0);

a := 0; b := minf1; �maxg f2�g

while
�
'(b) � �(b)

�
and

�
'0(b) �

�

and
�
b < �max

�
and

�
k < kmax

�

k := k + 1; a := b f3�g

b := minf2b; �maxg f4�g

� := b f5�g

while
�
('(�) > �(�)) or ('0(�) <)

�
and

�
k < kmax

�

k := k + 1

Re�ne � and [a; b] f6�g

if '(�) � '(0) f7�g

� := 0

end
We have the following remarks:

1� If x is a stationary point (f 0(x)= 0) '0(0)= 0) or h is not

downhill, then we do nothing.

2� The initial choice b=1 is used because in many optimization

methods (e.g. Newton's method in Chapter 5) �=1 is a very

good guess in the �nal steps of the iteration. The upper bound

�max must be supplied by the user. It acts as a guard against an

in�nite loop if f is unbounded.

3� We are to the left of a minimum and update the left hand end of

the interval [a; b].

29 2. Descent Methods

4� If �max is su�ciently large, then the series of b-values is 1; 2; 4; : : :,

corresponding to an \expansion factor" of 2. Other factors could

be used.

5� Initialization for second part of the algorithm.

6� See Function 2.26.

7� The algorithm may have stopped abnormally, e.g. by exceeding

the permitted number kmax of function evaluations. If the current

value of � does not decrease the objective function, then we return

�=0, cf. 1�.

The following Function 2.26 receives an interval [a; b] which we

know contains acceptable points. It produces an � using interpola-

tion. We want to be sure that the intervals have strictly decreasing

widths, so we only consider the new � if it is inside [a+d; b�d], where

d= 1
10
(b� a). The � splits [a; b] into two subintervals, and we return

the subinterval which must contain acceptable points.

Function 2.26. Re�ne

begin
D := b � a; c :=

�
'(b)� '(a)�D � '0(a)

�
=D2 f8�g

if c > 0

� := a� '0(a)=(2c)

else
� := (a+ b)=2

� := maxf�; a+0:1Dg; � := minf�; b�0:1Dg f9�g

if '(�) < �(�) f10�g

a := �

else
b := �

end

2.6. Exact Line Search 30

We have the following remarks

8� The second order polynomial

 (t) = '(a) + '0(a) � (t�a) + c � (t�a)2

satis�es (a)='(a), 0(a)='0(a) and (b)='(b). If c> 0, then

 has a minimum, and we let � be the minimizer. Otherwise we

take � as the midpoint of [a; b].

9� Ensure that � is in the middle 80% of the interval.

10� If '(�) is su�ciently small, then the right hand part of [a; b] con-

tain points that satisfy both of the constraints (2.24). Otherwise,

[�; b] is sure to contain acceptable points.

Finally, we give the following remarks about the implementation

of the algorithm.

The function and slope values are computed as

'(�) = f(x+�h); '0(�) = h>f 0(x+�h) :

The computation of f and f 0 is the \expensive" part of the line search.

Therefore, the function and slope values should be stored in auxillary

variables for use in acceptance criteria and elsewhere, and the imple-

mentation should return the value of the objective function and its

gradient to the calling programme, a descent method. They will be

useful as starting function value and for the starting slope in the next

linesearch (the next iteration).

2.6. Exact Line Search

The older methods for line search produce a value of �s which is

su�ciently close to the true result, �s ' �e with

�e � argmin��0 '(�) :

31 2. Descent Methods

The algorithm can be similar to the soft line search in 2.25, except

that the re�nement loop after remark 5� is changed to

while
�
j'0(�)j > � � j'0(0)j

�

and
�
b�a > "

�
and

�
k < kmax

�

� � �

(2.27)

Here, " and � indicate the level of errors tolerated; both should be

small positive numbers.

An advantage of an exact line search is that (in theory at least)

it can produce its results exactly, and this is needed in some theoret-

ical convergence results concerning conjugate gradient methods, see

Chapter 4.

The disadvantages are numerous. It normally takes far more time

per search direction than soft line searches do. Also, as indicated in

Example 2.5, it can lead to an increased number of search directions.

3. The Steepest Descent Method

Until now we have not answered an important question connected with

algorithm 2.7: Which of the possible descent directions (see de�nition

(2.11)) do we choose as search direction?

Our �rst considerations will be based purely on local �rst order

information. Which descent direction gives us the greatest gain in

function value relative to the step length? Using the �rst order Taylor

series (1.3) we get the following approximation

f(x) � f(x + �h)

�khk

' �
h>f 0(x)

khk

= jf 0(x)k cos � : (3.1)

In the last relation we have used the de�nition (2.12). We see that

the relative gain is greatest when the angle � = 0, i.e.

hsd = �f
0(x) : (3.2)

This search direction, the negative gradient direction, is called

the direction of steepest descent. It gives us a useful gain in function

value if the step is so short that the 3rd term in the Taylor series�
O(khk2)

�
is insigni�cant. Thus we have to stop well before we reach

the minimizer along the direction hsd. At the minimizer the higher

order terms are big enough to have changed the slope from its negative

starting value up to 0.

A descent method based on steepest descent and with a soft or an

exact line search is convergent according to Theorem 2.1. If we make

a method using hsd and a line search ensuring su�ciently short steps,

then the global convergence will manifest itself as a very robust global

33 3. The Steepest Descent Method

performance. The disadvantage is that the method will have linear

�nal convergence and this will often be exceedingly slow. If we use

exact line searches together with steepest descent, we invite trouble.

Example 3.1. We test a steepest descent method with exact line searches

with the function from Example 1.2,

f(x) = (x1 + x2 � 2)2 + 100(x1 � x2)
2 :

Figure 3.1 gives the contours of this function.

Figure 3.1: The Steepest Descent

Method fails to �nd the

minimizer of a quadratic

X
1

X
2

x
0

h
1

h
2

h
3

h
4

The gradient is

f 0(x) =
�
2(x1 + x2 � 2) + 200(x1 � x2)

2(x1 + x2 � 2)� 200(x1 � x2)
�

:

If the starting point is taken as x0 = [3; 598=202]>, then the �rst search

direction is

hsd = �
�
3200=202

0

�
:

This is parallel with the x1-axis. The exact line search will stop at a

point where the gradient is orthogonal to this. Thus the next search

3. The Steepest Descent Method 34

direction will be parallel with the x2-axis, etc. The iteration steps will

be exactly as in Example 1.2. The iteration will stop far away from

the solution because the steps become negligible compared with the

position, when represented in the computer with a given number of

digits.

The example above shows how the �nal linear convergence of the

steepest descent method can become so slow that it makes the method

completely useless when we are near the solution. We say that the

iteration is caught in Stiefel's cage.

Still, the method is useful when we are far from the solution.

It performs a little better if we make sure that the steps taken are

small enough. In a version like this it is included in several modern

hybrid methods, where there is a switch between two methods, one

with robust global performance and one with superlinear (or even

quadratic) �nal convergence. Under these circumstances the method

of steepest descent does a very good job as the \global part" of the

hybrid.

4. Conjugate Gradient Methods

The methods described in this chapter are the �rst ones that we

encounter that can be called practical. They are simple and easy

to implement, though perhaps not so easy to understand. Gener-

ally they are superior to the steepest descent method, but Newton's

method and its relatives, that will be described in the next chap-

ter, are usually even better. However, this is not always so, and

one class of problems where conjugate gradient methods often out-

perform Newton-type methods are ones with very large n (number of

unknowns). The reason is that the Newton-type of methods rely on

matrix operations, whereas conjugate gradient methods use only vec-

tors. Ignoring sparsity, Newton's method needs O(n3) operations per

iteration step, Quasi-Newton methods need O(n2), but the conjugate

gradient methods use only O(n) operations per iteration step. Simi-

larly for storage: Newton-type methods require an n�n matrix to be

stored, while conjugate gradient methods only need a few vectors.

The basis for the methods presented in this chapter is the following

de�nition of conjugate directions, and the relevance for our problems

is indicated in Example 4.1.
De�nition

A set of directions corresponding to vectors fh1;h2; : : :g

is conjugate with respect to a symmetric positive de�nite

matrix A

()

h>iAhj = 0 for all i 6= j

(4.1)

4. Conjugate Gradient Methods 36

Example 4.1. In IR2 we want to �nd the minimizer of a quadratic :

q(x) = a + b>x+ 1
2
x>Hx ;

where the matrix H is assumed to be positive de�nite. Figure 4.1 gives

the contours of such a polynomial.

Figure 4.1: In the 2-dimensional

case, the second conjugate gradient

step determines the minimizer of

a quadratic
X

1

X
2

x
0x

1

h
1

h
sd

h
cg

Remember that Examples 1.2 and 3.1 showed how the methods of al-

ternating directions and of steepest descent could be caught in Stiefel's

cage and fail to �nd the solution x�.

Assume that our �rst step was in the direction h1, a descent direction.

Now we have reached position x after an exact line search. Thus the

direction h1 is tangent to the contour at x. This means that h1 is

orthogonal to the steepest descent direction hsd at x, i.e. h>1hsd = 0 :

h>1
�
(�q0(x)

�
= h>1

�
�b�Hx

�
= 0 :

Now, the minimizer satis�es Hx�+b = 0 and inserting b from this we

get h>1H(x� � x) = 0 .

This shows that if we are at x after an exact line search along a descent

direction, h1, then the direction x��x to the minimizer is conjugate

to h1 with respect to H. We can prove that the conjugate direction is a

linear combination of the search direction h1 and the steepest descent

direction, hsd, with positive coe�cients, i.e. it is in the angle between

h1 and hsd.

37 4. Conjugate Gradient Methods

In the next sections we discuss conjugate gradient methods which

can �nd the minimizer of a second degree polynomial in n steps, where

n is the dimension of the space.

4.1. Quadratic models

An important tool for designing optimization methods is quadratic

modelling. The function f is approximated locally with a quadratic

function q of the form

q(x) = a+ b>x + 1
2
x>Hx ; (4.2)

where H is a symmetric matrix which is usually required to be positive

de�nite.

When the modelling is direct, we simply use the minimizer of q

to approximate x� and then repeat the process with a new approx-

imation. This is the basis of the Newton-type methods described in

Chapter 5. For the conjugate gradient methods, the model function

(4.2) will be employed more indirectly.

A related concept is that of quadratic termination, which is said

to hold for methods that �nd the exact minimum of the quadratic

(4.2) in a �nite number of steps. The steepest descent method is

not quadratically terminating, but all the methods discussed in this

chapter and the next are. Quadratic termination has proved to be an

important idea and worth striving for in the design of optimization

methods.

Because of the importance of quadratic models we now take a

closer look at the quadratic function (4.2). It is not di�cult to see

that its gradient at x is given by

q0(x) = Hx + b (4.3)

and for all x the Hessian is

q00(x) = H : (4.4)

4.2. Structure of a Conjugate Gradient Method 38

If H is positive de�nite, then q has a single minimizer at x� =

�H�1b. If n=2, then the contours of q are ellipses with centers

at x�. The shape and orientation of the ellipses are determined by

the eigenvalues and eigenvectors of H. For n=3 this generalizes to

ellipsoids, and in higher dimensions we get (n�1)-dimensional hyper-

ellipsoids. It is of course possible to de�ne quadratic functions with

a non-positive de�nite Hessian, but then there is no longer a single

minimizer.

Finally, a useful fact is that multiplication by H maps di�erences

in x-values to di�erences in the corresponding gradients:

H(x � z) = q0(x)� q0(z) : (4.5)

4.2. Structure of a Conjugate Gradient Method

Let us have another look at Figure 3.1 where the slow convergence of

the steepest descent method is demonstrated. An idea for a possible

cure is to take a linear combination of the previous search direction

and the current steepest descent direction to get a direction toward

the solution. This gives a method of the following type.

Algorithm 4.6. Conjugate Gradient Method

begin

x := x0; k := 0; found := false; := 0; hcg := 0 f1�g

repeat

hprev := hcg; hcg := �f 0(x) + � hprev

if f 0(x)>hcg � 0 f2�g

hcg := �f 0(x)

� := line search(x;hcg); x := x+ �hcg f3�g

 := � � � f4�g

k := k+1; found := � � � f4�g

until found or k > kmax

end

We have the following remarks:

39 4. Conjugate Gradient Methods

1� Initialization.

2� In most cases the vector hcg is downhill. This is not guaranteed,

e.g./ if we use a soft line search, so we use this modi�cation to

ensure that each step is downhill.

3� New iterate.

4� The formula for is characteristic for the method. This is dis-

cussed in the next sections.

5� We recommend to stop if one of the criteria

kf 0(x)k1 � "1 (4.7a)

k�hcgk2 � "2("2 + kxk2) (4.7b)

is satis�ed, cf. (2.8) and (2.9).

In the next theorem we show that a method employing conjugate

search directions and exact line searches is very good for minimizing

quadratics. In Theorem 4.2 (in Section 4.3) we show that, if f is

quadratic and the line searches are exact, then a proper choice of

gives conjugate search directions.

Theorem 4.1

Use Algorithm 4.6 with exact line searches on a quadratic like

(4.2) with x 2 IRn. The iterates are x1; x2; : : : with the iteration

steps hi = xi�xi�1 corresponding to conjugate directions. Then

1� The search directions hcg are downhill.

2� The local gradient f 0(xk) is orthogonal to h1;h2; : : : ;hk.

3� The algorithm terminates after at most n steps.

Proof: We examine the inner product in (2.11) and insert the expres-

sion for hcg

4.3. The Fletcher{Reeves Method 40

f 0(x)>hcg = �f 0(x)>f 0(x) + f 0(x)>hprev

= �kf 0(x)k22 � 0 :

(4.8)

The second term in the �rst line is zero for any choice of since

exact line searches terminate when the local gradient is orthogo-

nal to the search direction. Thus, hcg is downhill (unless x is a

stationary point i.e. unless f 0(x) = 0), and we have proven 1�.

Next, the exact line searches guarantee that

h>i f
0(xi) = 0; i = 1; : : : ; k (4.9)

and by means of (4.5) we see that for j < k,

h>j f
0(xk) = h>j
�
f 0(xj) + f 0(xk)� f 0(xj)

�

= 0 + h>jH(xk � xj)

= h>jH(hk + : : :+ hj+1) = 0 :

Here, we have exploited that the directions fhig are conjugate

with respect to H, and we have proven 2�.

Finally,H is non-singular, and it is easy to show that this implies

that a set of conjugate vectors is linearly independent. Therefore

fh1; : : : ;hng span the entire IRn, and f 0(xn) must be zero.

We remark that if f 0(xk)= 0 for some k�n, then the solution

has been found and Algorithm 4.6 stops.

What remains is to �nd a clever way to determine . The ap-

proach used is to determine in such a way that the resulting method

will work well for minimizing quadratic functions. The success of the

method for quadratics is then used as a justi�cation for applying it

on more general functions. This makes sense because Taylor's for-

mula shows that smooth functions are locally well approximated by

quadratics.

41 4. Conjugate Gradient Methods

4.3. The Fletcher{Reeves Method

The following formula for was the �rst one to be suggested:

 =

f 0(x)>f 0(x)

f 0(xprev)>f 0(xprev)
; (4.10)

where xprev is the previous iterate.

Algorithm 4.6 with this choice for is called the Fletcher{Reeves

method after the people who invented it in 1964.

Theorem 4.2

Apply the Fletcher{Reeves method with exact line searches to

the quadratic function (4.2). If f 0(xk) 6=0 for k=1; : : : ; n, then

the search directions h1; : : : ;hn are conjugate with respect to H.

Proof: See Appendix B.

According to Theorem 4.1 this implies that the Fletcher{Reeves

method with exact line searches used on quadratics will terminate in

at most n steps.

Point 1� in Theorem 4.1 shows that a conjugate gradient method

with exact linesearches produces descent directions. Al-Baali (1985)

proves that this is also the case for the Fletcher{Reeves method with

soft line searches satisfying certain mild conditions. We return to this

result in Theorem 4.3 below.

4.4. The Polak{Ribi�ere Method

An alternative formula for is

 =
�
f 0(x)� f 0(xprev)

�>
f 0(x)

f 0(xprev)>f 0(xprev)

; (4.11)

4.4. The Polak{Ribi�ere Method 42

Algorithm 4.6 with this choice of is called the Polak{Ribi�ere

Method. It dates from 1971 (and again it is named after the inven-

tors). For quadratics, (4.11) is equivalent to (4.10) (because then

f 0(xprev)
>
f 0(x)= 0 , see (B.6) in Appendix B).

For general functions, however, the two methods di�er, and

through the years experience has shown (4.11) to be superior to (4.10).

Of course the search directions are still downhill for exact line searches

combined with the Polak{Ribi�ere Method. For soft line search there

is however no result parallel to that of Al-Baali for the Fleetcher{

Reeves Method. In fact M.J.D. Powell has constructed an example

where the method fails to converge even with exact line search (see

Nocedal (1992) p. 213). The succes of the Polak{Ribi�ere formula is

therefore not so easily explained by theory.

Example 4.2. (Resetting). A possibility that has been proposed, is to

reset the search direction h to the steepest descent direction hsd every

n iterations. The rationale behind this is the n-step quadratic termina-

tion property. If we enter a neighbourhood of the solution where f be-

haves like a quadratic, resetting will ensure quick convergence. Another

apparent advantage of resetting is that it will guarantee global conver-

gence (by Theorem 2.1). However, practical experience has shown that

the pro�t of resetting is doubtful.

In connection with this we remark that the Polak{Ribi�ere method has

a kind of inbuilt resetting. Should we encounter a step away from the

solution with very little progress, so that kx�xprevk is small compared

with kf 0(xprev)k, then kf 0(x)�f 0(xprev)k will also be small and there-

fore is small, and hcg ' hsd in this situation. Also, the modi�cation

before the line search in Algorithm 4.6 may result in an occasional re-

setting.

43 4. Conjugate Gradient Methods

4.5. Convergence Properties

In Theorem 4.1 we saw that the search directions hcg of a conjugate

gradient method are descent directions and thus the � of (2.12) satis-

�es � < �=2. There is no guarantee, however, that the � of (2.13) will

stay constant, and Theorem 2.1 is therefore not directly applicable.

For many years it was thought that to guarantee convergence of

a conjugate gradient method it would be necessary to use a compli-

cated ad hoc line search, and perhaps make some other changes to the

method. But in 1985 Al-Baali managed to prove global convergence

using a traditional soft line search:

Theorem 4.3

Let the line search used in Algorithm 4.6 satisfy (2.15) and (2.16)

with parameter values % < � < 0:5. Then there is a c > 0 such

that for all k

f 0(x)>hcg � �ckf 0(x)k22

and

limk!1 kf 0(x)k2 = 0

Proof: See Al-Baali (1985).

In Example 4.2 we saw that resetting will ensure global conver-

gence for any conjugate gradient method. The importance of this

result is however of more theoretical than practical value.

Let us �nally remark on the rate of convergence. Crowder and

Wolfe (1972) show that, for exact line searches, conjugate gradient

methods have a linear convergence rate, as de�ned in (2.4). This

should be contrasted with the superlinear convergence rate that holds

for Quasi-Newton methods and the quadratic convergence rate that

Newton's method possesses.

4.7. The CG Method for Linear Systems 44

4.6. Other Methods and further reading

Over the years there have been proposed numerous other conjugate

gradient formulae and amendments to the Fletcher{Reeves and Polak{

Ribi�ere method. We only give a short summary here, and refer the

interested reader to the book by Fletcher (1987) and the paper by

Nocedal (1992) for details and further information.

A possible amendment to the Polak{Ribi�ere method is to choose

 = max(PR; 0) where PR is the of (4.11). With this choice of it

is possible to guarantee global convergence with inexact line searches.

See p. 213 in Nocedal (1992) for further discussion and references.

The conjugate gradient methods belong to a class of methods

sometimes referred to as conjugate direction methods. Other exam-

ples of these may be found in Fletcher (1987).

Finally we want to mention two classes of methods that have

received much attention in recent years. The �rst class is called limited

memory Quasi-Newton methods, and the second class is truncated

Newton methods or inexact Newton methods. These are not conjugate

direction methods, but they are also aimed at solving large problems.

See pages 233{234 in Nocedal (1992) for some discussion and further

references.

4.7. The CG Method for Linear Systems

We cannot part with conjugate gradient methods without mentioning

that they can of course be used to minimize the quadratic function

(4.2) itself. But by (4.3) this is equivalent to solving the positive

de�nite linear system

Hx = �b :

When used in this way the exact steplength � may be calculated

directly and no line search is needed. It is not di�cult to see that

45 4. Conjugate Gradient Methods

� =
�h>cgH(x + b)

h>cgHhcg

:

The Fletcher{Reeves and the Polak{Ribi�ere formulae are equiva-

lent in this setting, and the resulting method is called the conjugate

gradient method for linear systems. Its study is a whole subject in

itself, within the �eld of numerical linear algebra.

One situation where this method may be preferrable is when the

system to be solved is large and sparse. Since the conjugate gradient

method only needs matrix-vector multiplications it can then be much

cheaper than a direct method, e.g. Gaussian elimination.

4.8. Implementation

To implement a conjugate gradient algorithm in a computer program,

some decisions must be made. Of course we need to choose a formula

for . Here the Polak{Ribi�ere formula is recommended.

We also need to specify the exactness of the line search. For

Newton-type methods it is usually recommended that the line search

be quite soft, so for the line search in Algorithm 2.25 it is common

to choose the parameter values %= 0:01 and �=0:9. For conjugate

gradient methods experience dictates that a line search with stricter

tolerances be used, say %= 0:01 and �= 0:1. In addition we have to

specify the stopping criterion. Here (2.9) is recommended. We do not

have acces to f 00(xk) and therefore cannot use (2.10). For methods

with a fast convergence rate, (2.8) may be quite satisfactory, but its

use for conjugate gradient methods must be discouraged because their

�nal convergence rate is only linear.

Finally some remarks on the storage of vectors. The Fletcher{

Reeves method may be implemented using three n-vectors of storage,

x, g and h. If these contain x, f 0(x) and hprev at the beginning of

the current iteration step, we may overwrite h with hcg and during

the line search we overwrite x with x+�hcg and g with f 0(x+�hcg).

4.8. Implementation 46

Before overwriting the gradient, we �nd f 0(x)
>
f 0(x) for use in the

denominator in (4.10) on the next iteration. For the Polak{Ribi�ere

method we need acces to f 0(x) and f 0(xprev) simultaneously, and thus

four vectors are required, say x, g, gnew and h.

Example 4.3. Rosenbrock's function,

f(x) = 100(x2 � x21)
2

+ (1� x1)
2 ;

is widely used for testing optimization algorithms. Figure 4.2 shows

level curves for this function (and illustrates, why it is sometimes called

the \banana function").

The function has one minimizer x� = [1; 1]> with f(x�)= 0, and there

is a \valley" with sloping bottom following the parabola x2 = x21. Most

optimization algorithms will try to follow this valley. Thus, we will

need a considerable amount of iteration steps if we take x0 in the 2nd

quadrant.

−1.5 1.5

−0.5

 2

X1

X2

300

100

30

10
3

1

0.3

Figure 4.2: Contours of Rosenbrock's function

Below we give the number of iteration steps and evaluations of f(x)

and f 0(x) when applying Algorithm 4.6 on this function. In all cases

47 4. Conjugate Gradient Methods

we use the starting point x0 = [�1:2; 1]>, and stopping criteria given

by "1 = 10�8, "2 = 10�12 in (4.7). In case of exact line search we use

� = 10�6, " = 10�6 in (2.27), while we take � = 10�1, % = 10�2 in

Algorithm 2.25 for soft line search.

Method Line search # it. steps # fct. evals

Fletcher{Reeves exact 118 1429

Fletcher{Reeves soft 249 628

Polak{Ribi�ere exact 24 266

Polak{Ribi�ere soft 45 130

Thus, in this case the Polak{Ribi�ere method with soft line search per-

forms best. Below we give the iterates (cf. Figure 4.2) and the values

of f(xk) and kf 0(xk)k1; note the logarithmic ordinate axis.

−1.2 1

1

X1

X2

0 10 20 30 40 50
1e−15

1e−10

 1e−5

 1

f
||f’||

Figure 4.3: Polak{Ribi�ere method with soft line search

applied to Rosenbrock's function.

Top: iterates xk. Bottom: f(xk) and kf 0(xk)k1.

5. Newton-Type Methods

In this chapter we consider a class of methods for unconstrained op-

timization which are based on Newton's method. This class is called

Quasi-Newton methods. In order to explain these methods we �rst

describe Newton's method for unconstrained optimization in detail.

Newton's method leads to another kind of methods known as Damped

Newton Methods, which will also be presented.

Finally we get to the Quasi-Newton methods. This class includes

some of the best methods on the market for solving the unconstrained

optimization problem.

5.1. Newton's Method

Newton's method forms the basis of all Quasi-Newton methods. It

is widely used for solving systems of non-linear equations, and until

recently it was also widely used for solving unconstrained optimization

problems. As it will appear, the two problems are closely related.

Example 5.1. In Example 1.2 we saw the method of alternating directions

fail to �nd the minimizer of a simple quadratic in two dimensions and

in Example 3.1 we saw the steepest descent method fail on the same

quadratic. In Chapter 4 we saw that the conjugate gradient methods

�nds the minimizer of a quadratic in n steps (n being the dimension of

the space), in two steps in Example 4.1.

Newton's method can �nd the minimizer of a quadratic in n-

dimensional space in one step. This follows from equation (5.2) below.

Figure 5.1 gives the contours of our 2-dimensional quadratic together

with (an arbitrary) x0. x1 and the minimizer x�, marked by �.

49 5. Newton-Type Methods

Figure 5.1: Newton's method �nds

the minimizer of a quadratic in

the very �rst step

X
1

X
2

x
0

x
1

In order to derive Newton's method in the version used in opti-

mization, we shall once again consider the truncated Taylor expansion

of the cost function at the current iterate x :

f(x + h) ' q(h) ; (5.1a)

where q(h) is the quadratic model of f in the vicinity of x,

q(h) = f(x) + h>f 0(x) + 1
2
h>f 00(x)h : (5.1b)

The idea now is to minimize the model q at the current iterate. If

f 00(x) is positive de�nite, then q has a unique minimizer at a point

where the gradient of q equals zero, i.e. where

f 0(x) + f 00(x)h = 0 : (5.2)

Hence, in Newton's method the new iteration step is obtained as the

solution to the system (5.2) as shown in the following algorithm.

Algorithm 5.3. Newton's Method

begin
x := x0; fInitialisationg

repeat

Solve f 00(x)hN = �f 0(x) f�nd stepg

x := x + hN f. . . and next iterateg

until stopping criteria satis�ed

end

5.1. Newton's Method 50

Newton's method is well de�ned as long as f 00(x) remains non-

singular. Also, (5.2) shows that the step is downhill if the Hessian is

positive de�nite:

h>Nf
00(x)hN > 0 =) h>Nf
0(x) < 0 (5.4)

proving that hN is downhill, see De�nition (2.11). Further, if f 00(x)

stays positive de�nite in all the steps and if the starting point is su�-

ciently close to a minimizer, then the method usually converges rapidly

towards such a solution. More precisely the following theorem holds:

Theorem 5.1

If one of the iterates, x, is su�ciently close to a local minimizer

x� and f 00(x�) is positive de�nite, then Newton's method is well

de�ned for all the following steps, and it converges quadratically

towards x�.

Proof: See e.g. Fletcher (1987).

Example 5.2. We shall use Newton's method to �nd the minimizer of the

following function

f(x) = 0:5 � x21 � (x21=6 + 1)

+x2 � Arctan(x2)� 0:5 � ln (x22 + 1) :

(5.5)

We need the derivatives of �rst and second order for this function:

f 0(x) =
�
x31=3 + x1

Arctan(x2)
�

; f 00(x) =
�
x21 + 1 0

0 1=(1 + x22)
�

:

We can see in Figure 5.2 that in a region around the minimizer the

function looks very well-behaved and extremely simple to minimize.

Table 5.1 gives results of the iterations with the starting point x>0 =

[1; 0:7]. According to Theorem 5.1 we expect quadratic convergence.

51 5. Newton-Type Methods

Figure 5.2: Contours of the

function (5.5). The level

curves are symmetric

across both axes

−0.5 1.5

−0.5

 2.5

X
1

X
2

If the factor c2 in (2.5) is of the order of magnitude 1, then the column

of x>k would show the number of correct digits doubled in each iteration

step, and the f -values and step lengths would be squared in each itera-

tion step. The convergence is faster than this; actually for any starting

point x>0 = [u; v] with jvj < 1 we will get cubic convergence; see the

next example.

k x>k f kf 0k khkk

0 [1.00000000000000, 0.70000000000000] 8.11e-01 1.47e+00

1 [0.33333333333333, -0.20998168693992] 7.85e-02 4.03e-01 1.13e+00

2 [0.02222222222222, 0.00611895804438] 2.66e-04 2.31e-02 3.79e-01

3 [0.00000731234690, -0.00000015273477] 2.67e-11 7.31e-06 2.30e-02

4 [0.00000000000000, 0.00000000000000] 3.40e-32 2.61e-16 7.31e-06

5 [0.00000000000000, 0.00000000000000] 0.00e+00 0.00e+00 2.61e-16

Table 5.1: Newton's method on (5.5). x>0 = [1; 0:7]

Until now, everything which has been said about Newton's

method seems very promising: It is very simple and if the conditions

of Theorem 5.1 are satis�ed, then the rate of convergence is excellent.

Nevertheless, due to a series of drawbacks the basic version of the

method is not suitable for a general purpose optimization algorithm.

The �rst and by far the most severe drawback is the methods lack

of global convergence.

5.1. Newton's Method 52

Example 5.3. With the starting point x>0 = [1; 2] the Newton method

behaves very badly:

k x>k f kf 0k khkk

0 [1.00000000000000, 2.00000000000000] 1.99e+00 1.73e+00

1 [0.33333333333333, -3.53574358897045] 3.33e+00 1.34e+00 5.58e+00

2 [0.02222222222222, 13.95095908692750] 1.83e+01 1.50e+00 1.75e+01

3 [0.00000731234690, -2.7934406653e+02] 4.32e+02 1.57e+00 2.93e+02

4 [0.00000000000000, 1.2201699892e+05] 1.92e+05 1.57e+00 1.22e+05

5 [0.00000000000000, -2.3386004198e+10] 3.67e+10 1.57e+00 2.34e+10

Table 5.2: Newton's method on (5.5). x>0 = [1; 2]

Clearly, the sequence of iterates moves rapidly away from the solution

(the �rst component converges, whereas the second increases in size

with alternating sign) even though f 00(x) is positive de�nite for any

x2 IR2.

The reader is encouraged to investigate what happens in detail. Hint:

The Taylor expansion for Arctan(0+h) is

Arctan(0+h) =
(
h� 1
3
h3 + 1
5
h5 � 1
7
h7 + � � � for jhj < 1

sign(h)
�
�

2
� 1
h

+

1
3h3
� 1
5h5

+ � � �
�

for jhj > 1 :

The next point to discuss is that f 00(x) may not be positive de�nite

when x is far from the solution. In this case the sequence may be

heading towards a saddle point or a maximizer since the iteration is

identical to the one used for solving the non-linear system of equations

f 0(x)= 0. Any stationary point of f is a solution to this system. Also,

f 00(x) may be ill-conditioned or singular so that the linear system

(5.2) cannot be solved without considerable errors in hN. Such ill-

conditioning may be detected by a well designed matrix factorization

(e.g. a Cholesky factorization as described in Appendix A), but it still

leaves the question of what to do in case ill-conditioning occurs.

The �nal major drawback is of a more practical nature but ba-

sically just as severe as the ones already discussed. Algorithm 5.3

53 5. Newton-Type Methods

requires the analytic second order derivatives. These may be di�cult

to determine even though they are known to exist. Further, in case

they can be obtained, users tend to make erroneous implementations

of the derivatives (and later blame a consequential malfunction on the

optimization algorithm). Also, in large scale problems the calculation

of the Hessian may be costly since 1
2
n(n+1) function evaluations are

needed.
Below, we summarize the advantages and disadvantages of New-

ton's method discussed above. They are the key to the development of

more useful algorithms, since they point out properties to be retained

and areas where improvements and modi�cations are required.

Advantages and disadvantages of Newton's method for

unconstrained optimization problems

Advantages

1� Quadratically convergent from a good starting point if f 00(x�)

is positive de�nite.

2� Simple and easy to implement.

Disadvantages

1� Not globally convergent for many problems.

2� May converge towards a maximum or saddle point of f .

3� The system of linear equations to be solved in each iteration

may be ill-conditioned or singular.

4� Requires analytic second order derivatives of f .

Table 5.3: Pros and Cons of Newton's Method

5.2. Damped Newton Method

Despite the fact that disadvantage no. 4 in Table 5.3 often makes it

impossible to use any of the modi�ed versions of Newton's method,

we shall still discuss these, because some important ideas have been

5.2. Damped Newton Method 54

introduced when they were developed. Further, in case second order

derivatives are obtainable, modi�ed Newton methods may be used

succesfully. Hence, for the methods discussed in this subsection it is

still assumed, that second order analytic derivatives of f are available.

The more e�cient modi�ed Newton methods are constructed as

either explicit or implicit hybrids between the original Newton method

and the method of steepest descent. The idea is that the Algorithm in

some way should take advantage of the safe, global convergence prop-

erties of the steepest descent method whenever Newton's method gets

into trouble. On the other hand the quadratic convergence of New-

ton's method should be obtained when the iterates get close enough

to x�, provided that the Hessian is positive de�nite.

The �rst modi�cation which comes to mind is a Newton method

with line search in which the Newton step is used as a search direction

i.e. hN = �[f 00(x)]�1f 0(x). Such a method is obtained if the step

x := x+hN in 5.3 is substituted by

� := line search(x;hN); x := x+ �hN (5.6)

This will work �ne as long as f 00(x) is positive de�nite since in this

case hN is a descent direction, cf. (5.4).

The main di�culty thus arises when f 00(x) is not positive de�nite.

The Newton step can still be computed if f 00(x) is non-singular, and

one may search along �hN where the sign is chosen in each iteration

to ensure a descent direction. However, this rather primitive approach

is questionable since the quadratic model q(h) will not even possess a

unique minimum.

A much more appealing modi�cation is a hybrid method where

we keep the line search and use a steepest descent direction in case the

Hessian is not positive de�nite. (This is the so-called Goldstein and

Price (1960) modi�cation). In order to ensure global convergence to-

wards a stationary point, one must also demand that possible Newton

directions shall satisfy the angle test (2.13) in order for the method to

55 5. Newton-Type Methods

be an absolute descent method. Unfortunately, according to Fletcher

(1987), such a method frequently behaves like the steepest descent

method itself due to the fact that the second order information is

ignored in many of the steps.

The last class of modi�cations of the original Newton method to be

considered here is often refered to as the Damped Newton methods.

These are also considered to be the most successful in general. In

order to derive the framework of these methods, Newton's method

and a reformulated version of the steepest descent method are shown

together here. (I is the identity matrix).

Steepest Descent Newton's method

Solve I hsd = �f
0(x) Solve f 00(x)hN = �f 0(x)

� := line search(x;hsd)

x := x+ �hsd x := x+ hN

Table 5.4: Steepest Descent and Newton's method

The approach in a Damped Newton method is to combine the two

methods by adding a multiple of the identity matrix to f 00(x). Hence,

the framework for this type of method is

Damped Newton step

Solve (f 00(x) + �I)hdN = �f 0(x) (� � 0)

Adjust �

If x+ hdN is acceptable, then x := x+ hdN

(5.7)

As it is easily seen, this type of method is a compromise between

the two underlying methods. If � is large then hdN will be very close to

the steepest descent direction, whereas a small � yields an hdN which

is close to the Newton direction hN. Since second order information

is not neglected, methods of the this type are normally more e�ective

than the one by Goldstein and Price.

5.2. Damped Newton Method 56

In (5.7) there is no line search but a new type of parameter has

appeared. We must decide how � should be chosen. Furthermore,

we must consider if it is wise to leave out the line search. Damped

Newton type methods with line search have been used (see e.g. Lu-

enberger (1974)). However, as we shall see below, present techniques

for choosing � makes the line search obsolete (this is also presented

in Luenberger (1974)).

There are several schemes for dynamical updating of �. In

Levenberg{Marquardt type methods � is updated in each iteration

step. Given the present value of the parameter, the Cholesky fac-

torization of f 00(x)+�I is employed to check for positive de�niteness,

and � is increased if the matrix is not signi�cantly positive de�nite.

Otherwise, the solution hdN is easily obtained via the factorization.

Note, that increasing � in the case where f 00(x)+�I is not positive

de�nite corresponds to changing the quadratic model so that it has a

unique minimizer.

With the procedure above the direction found is sure to be down-

hill, but this is not enough to ensure global convergence. We must also

include measures that ensure that the length of the step is appropriate,

so that the method is descending. (Consider what would happen if

this was the only modi�cation and such a method were used to min-

imize the tricky function (5.5)). Also, the procedure only provides

mechanisms to increase �. There is no way to reduce it and thereby

take advantage of the rapid convergence of the Newton method.

As in a trust region method we can investigate the value of the cost

function at the trial point, i.e. f(x+hdN). If it is su�ciently below

f(x), then the point x+hdN is chosen as the next iterate. Otherwise,

x is still the current iterate, and � is increased. It is not su�cient to

check whether f(x + hdN) < f(x). In order to prove convergence for

the whole procedure one needs to test whether the actual decrease in

f-value is larger than some small portion of the decrease predicted by

the quadratic model (5.1), i.e. if

57 5. Newton-Type Methods

r �

f(x) � f(x+h)

q(0) � q(h)

> � ; (5.8)

where � is a small positive number (typically � ' 10�3).

We recognize r as the gain factor, (2.22). It is also used to monitor

�: If r is close to one, then one may expect the model to be a good

approximation of f in the neighbourhood of x. Thus the inuence of

Newton's method should be increased by decreasing �. If, on the other

hand, the actual decrease of f is much smaller than expected, then �

must be increased in order to adjust the method more towards steepest

descent. It is important to note that in this case the length of hdN is

reduced, since for � large hdN '
�1
�
f 0(x). Thus � acts as a kind of

step size regulator, besides its control over the step direction, and we

have a further analogy to trust region methods. The reader is referred

to Fletcher (1987) or Mor�e and Sorenson (1982) for a treatment of this

subject.

We could use an updating strategy similar to the one employed in

Algorithm 2.23,

if r > 0:75

� := �=3

if r < 0:25

� := � � 2

(5.9)

However, the discontinuous changes in � when r is close to 0.25 or

0.75 can cause a \utter" that slows down convergence. Therefore,

we recommend to use the equally simple strategy given by

if r > 0

� := � �maxf 1
3
; 1� (2r � 1)3g

else
� := � � 2

(5.10)

The two strategies are illustrated below and are further discussed in

Nielsen (1999) and Section 3.2 of Madsen et al. (1999).

5.2. Damped Newton Method 58

ρ0 10.25 0.75

1

µ
new

/µ

Figure 5.3: Updating of � by (5.9) (dasheded line)

and by (5.10) (full line).

The method is summarized in

Algorithm 5.11. Damped Newton Method

begin fLevenberg{Marquardt type damped Newtong

x := x0; � := �0; found := false; k := 0; fInitialisationg

repeat

while f 00(x)+�I not pos. def. fusing : : :g

� := 2�

Solve (f 00(x)+�I)hdN = �f 0(x) f: : : Choleskyg

Compute gain factor r by (5.8)

if r > � ff decreasesg

x := x + hdN fnew iterateg

� := � �maxf 1
3
; 1 � (2r � 1)3g f. . . and �g

else
� := � � 2 fincrease � but keep xg

k := k+1; Update found fsee (5.12)g

until found or k > kmax

end fof LM type damped Newtong

Similar to (4.7) we can use the stopping criteria

kf 0(x)k1 � "1 or khdNk2 � "2("2 + kxk2) : (5.12)

59 5. Newton-Type Methods

The simplicity of the original Newton method has disappeared in

the attempt to obtain global convergence, but this type of method

does perform well in general.

Example 5.4. Table 5.5 illustrates the performance of Algorithm 5.11

when applied to the tricky function (5.5). We use �0 = 1 and "1 = 10�8,

"2 = 10�12 in (5.12).

k x>k f kf 0k1 r �

0 [1.0000000000, 2.0000000000] 1.99e+00 1.33e+00 0.999 1.00e+00

1 [0.5555555556, 1.0773760685] 6.63e-01 8.23e-01 0.872 3.33e-01

2 [0.1824004456, 0.0441028668] 1.77e-02 1.84e-01 1.010 1.96e-01

3 [0.0323940533, 0.0071966616] 5.51e-04 3.24e-02 1.000 6.54e-02

4 [0.0020074933, 0.0004414865] 2.11e-06 2.01e-03 1.000 2.18e-02

5 [0.0000428275, 0.0000094174] 9.61e-10 4.28e-05 1.000 7.27e-03

6 [0.0000003089, 0.0000000679] 5.00e-14 3.09e-07 1.000 2.42e-03

7 [0.0000000007, 0.0000000002] 3.05e-19 7.46e-10

Table 5.5: Algorithm 5.11 applied to (5.5). x>0 =[1; 2], �0=1

The solution is found without problems, and the columns with f and

kf 0k show superlinear convergence, as de�ned in (2.6).

Example 5.5. We have used Algorithm 5.11 on Rosenbrock's function

from Example 4.3. We use the same starting point, x0 = [�1:2; 1]>,

and with �0 = 1, "1 = 10�10, "2 = 10�12 we found the solution after

29 iteration steps. The performance is illustrated below
−1.2 1

1

X1

X2

Figure 5.4a: Damped Newton Method on Rosenbrock's function. Iterates

5.3. Quasi{Newton Methods 60

0 5 10 15 20 25 30
1e−15

1e−10

 1e−5

 1

f
||f’||
 µ

Figure 5.4b: f(xk), kf 0(xk)k1 and �.

The three circles in Figure 5.4a indicates points, where the iterations

stalls, i.e. the current x is not changed, but � is updated. After passing

the bottom of the parabola, the damping parameter � is decreased

in each step. As in the previous example we achieve superlinear �nal

convergence.

5.3. Quasi{Newton Methods

The modi�cations discussed in the previous section make it possible

to overcome the �rst three of the main disadvantages of Newton's

method shown in Table 5.3: The damped Newton method is globally

convergent, ill-conditioning may be avoided, and minima are rapidly

located. However, no means of overcoming the fourth disadvantage

has been considered: The user must still supply formulae and imple-

mentations of the second derivatives of the cost function.

In Quasi{Newton methods (from latin, quasi: nearly) the idea is

to use matrices which approximate the Hessian matrix or its inverse,

instead of the Hessian matrix or its inverse in Newton's equation (5.2).

The matrices are normally named

B ' f 00(x) and D ' f 00(x)�1 : (5.13)

61 5. Newton-Type Methods

The matrices can be produced in many di�erent ways ranging from

very simple techniques to highly advanced schemes, where the approx-

imation is built up and adjusted dynamically on the basis of informa-

tion about the �rst derivatives, obtained during the iteration. These

advanced Quasi{Newton methods, developed in the period from 1959

and up to the present days, are some of the most powerful methods

for solving unconstrained optimization problems.

Possibly the simplest and most straight-forward Quasi{Newton

method is obtained if the elements of the Hessian matrix are

approximated by �nite di�erences: In each coordinate direction,

ei (i=1; : : : ; n), a small increment �i is added to the correspond-

ing element of x and the gradient in this point is calculated. The

ith column of a matrix B is calculated as the di�erence approxi-

mation

�
f 0(x+�iei) � f 0(x)

�
=�i. After this, the symmetric matrix

B := 1
2
(B +B>) is formed.

If the f�ig are chosen appropriately, this is a good approximation

to f 00(x) and may be used in a damped Newton method. However, the

alert reader will notice that this procedure requires n extra evaluations

of the gradient in each iteration { an a�air that may be very costly.

Further, there is no guaranty that B is positive (semi-)de�nite.

In the advanced Quasi{Newton methods these extra gradient

evaluations are avoided. Instead we use updating formulae where

the B or D matrices (see 5.13) are determined from information

about the iterates, x1;x2; : : : and the gradients of the cost function,

f 0(x1); f
0(x2); : : : gathered during the iteration steps. Thus, in each it-

eration step the B (orD) matrix is changed so that it �nally converges

towards f 00(x�) (or respectively f 00(x�)�1), x� being the minimizer.

5.4. Quasi{Newton with Updating Formulae

We begin this subsection with a short discussion on why approxima-

tions to the inverse Hessian are preferred rather than approximations

to the Hessian itself: First, the computational labor in the updating

5.5. The Quasi{Newton Condition 62

is the same no matter which of the matrices we update. Second, if we

have an approximate inverse, then the search direction is found sim-

ply by multiplying the approximation with the negative gradient of

f . This is an O(n2) process whereas the solution of the linear system

with B as coe�cient matrix is an O(n3) process.

A third possibility is to use approximations to the Cholesky factor

of the Hessian matrix, determined at the start of the iteration and

updated in the iteration. Using these, we can �nd the solution of

the system (5.2) in O(n2) operations. This technique is beyond the

scope of the present notes, but the details can be found in Dennis and

Schnabel (1984). Further, we remark that early experiments with

updating formulae indicated that the updating of an approximation

to the inverse Hessian might become unstable. According to Fletcher

(1987), recent research indicates that this needs not be the case.

A classical Quasi{Newton method with updating always includes

a line search. Alternatively, updating formulae have been used in trust

region methods. Basically, these two di�erent approaches (line search

or trust region) de�ne two classes of methods. In this section we shall

con�ne ourselves to the line search approach.

With these comments the framework may be presented:

Framework 5.14 for iteration step

Quasi{Newton with Updating and Line Search

B (or D) is the current approximation to f 00(x) (or f 00(x)�1)

Solve BhqN = �f 0(x) (or compute hqN := �Df 0(x))

Line search along hqN giving hqN := �hqN; xnew = x + hqN

Update B to obtain Bnew (or D to Dnew)

In what follows the requirements to the updating and the tech-

niques needed shall be presented.

63 5. Newton-Type Methods

5.5. The Quasi{Newton Condition

The �rst and most important requirement which an updating formula

must satisfy, is the socalled Quasi{Newton condition, which may be

derived in several ways. The condition is also referred to as the Se-

quant condition, because it is closely related to the secant method for

non-linear equations with one unknown.

Let x andD be the current iterate and approximation to f 00(x)�1.

Given these, the �rst parts of the iteration step in the framework 5.14

can be performed yielding hqN and hence xnew. The objective is to

calculate Dnew by a correction of D. The correction must contain

some information about the second derivatives. Clearly, this informa-

tion is only approximate. It is based on the gradients of f at the two

points. Now, consider the Taylor expansion of f 0 around x+hqN :

f 0(x) = f 0(x+hqN)� f 00(x+hqN)hqN + � � � : (5.15)

If f were a quadratic function, then the higher order terms would

vanish, and the equation would be exact. Since f is well approximated

by a quadratic near xnew = x+hqN, and since the higher order terms

are di�cult to handle, they are neglected. With these comments and

the notation

y = f 0(xnew)� f 0(x) ; (5.16)

equation (5.15) leads to the relation, similar to (4.5),

y = f 00(xnew)hqN :

Therefore, we require that Dnew should satisfy

Dnewy = hqN : (5.17a)

This is the Quasi{Newton condition. The same arguments lead to the

alternative formulation of the Quasi{Newton condition,

BnewhqN = y : (5.17b)

5.6. Broyden's Rank-One Formula 64

The Quasi{Newton condition only supplies n conditions on the

matrix Dnew (or Bnew) but it has n2 elements. Therefore additional

conditions are needed to get a well de�ned method.

In the Quasi{Newton methods that we describe, the D (or B)

matrix is updated in each iteration step. We produce Dnew (or Bnew)

by adding a correction term to the present D (or B). An important

requirement to the updating is that it must be simple and fast to

perform and yet e�ective. This can be obtained with a recursive

relation between successive approximations,

Dnew =D+W ;

where W is a correction matrix. In nearly all methods used in prac-

tice, W is a rank-one matrix

Dnew =D+ ab>

or a rank-two matrix

Dnew =D+ ab> + uv> ;

where a;b;u;v 2 IRn. Hence W is an outer product of two vectors

or a sum of two such products. Often a equals b, and u=v; this is a

simple way of ensuring that W is symmetric.

5.6. Broyden's Rank-One Formula

Tradition calls for a presentation of the simplest of all updating for-

mulas which was initially described by Broyden (1965). It was not

the �rst updating formula but we present it here to illustrate some of

the ideas and techniques used to establish updating formulae.

First, consider rank-one updating of the matrix B :

Bnew = B+ ab> :

The vectors a;b 2 IRn are chosen so that they satisfy the Quasi{

65 5. Newton-Type Methods

Newton condition (5.17b),�
B+ ab>

�
hqN = y (5.18a)

and { in an attempt to keep information already in B { Broyden

demands that for all v orthogonal to hqN we get Bnewv = Bv, i.e.�
B+ ab>

�
v = Bv for all v j v>hqN = 0 : (5.18b)

These conditions are satis�ed if we take b = hqN and the vector a

determined by

(h>qNhqN)a = y �BhqN :

This results in Broyden's rank-one formula for updating the approxi-

mation to the Hessian:

Bnew = B+

1

h>qNhqN
�
y �BhqN

�
h>qN : (5.19)

A formula for updating an approximation to the inverse Hessian may

be derived in the same way and we obtain

Dnew = D+

1
y>y

�
hqN �Dy

�
y> : (5.20)

The observant reader will notice the symmetry between (5.19) and

(5.20). This is further discussed in Section 5.10.

Now, given some initial approximationD0 (or B0) (the choice of

which shall be discussed later), we can use (5.19) or (5.20) to gener-

ate the sequence needed in the framework. However, two important

features of the Hessian (or its inverse) would then be disregarded: We

wish both matrices B and D to be symmetric and positive de�nite.

This is not the case for (5.19) and (5.20), and thus the use of Broy-

den's formula may lead to steps which are not even downhill, and

convergence towards saddle points or maxima will often occur. Hence

these formulae are never used for unconstrained optimization.

5.7. Symmetric Updating 66

Broyden's rank-one formula was developed for solving systems of

non-linear equations. Further, the formulae have several other appli-

cations, e.g. in methods for least squares and minimax optimization.

5.7. Symmetric Updating

Since f 00(x)�1 is symmetric, it is natural to require D to be so. If at

the same time rank-one updating is required, the basic recursion must

have the form

Dnew =D+ uu> : (5.21a)

The Quasi{Newton condition (5.17a) determines u uniquely: Substi-

tuting (5.21) into (5.17a) and letting h denote hqN yields

h =Dy + uu>y () h�Dy = (u>y)u ; (5.21b)

implying that

(h�Dy)(h�Dy)> = (u>y)2uu> : (5.21c)

The factor (u>y)2 is found simply by taking the inner product with

y on both sides of (5.21b):

y>(h�Dy) = (u>y)u>y = (u>y)2 : (5.21d)

By combining (5.21a{d) we get the SR1 formula (symmetric rank-one

updating formula)

Dnew =D+

1
y>u

uu> with u = h�Dy : (5.22)

It may be shown that if h = Dy, then Dnew = D is the only

solution to the problem of �nding a symmetric rank-one update which

satis�es (5.17a). If, however, y>u=0 while at the same time h 6=Dy,

then there is no solution, and the updating breaks down. Thus, in

case the denominator becomes small we simply set Dnew = D and

avoid division by zero.

67 5. Newton-Type Methods

The SR1 formula has some interesting properties. The most im-

portant is that a Quasi{Newton method without line search based on

SR1 will minimize a quadratic function with positive de�nite Hessian

in at most n+1 iteration steps, provided the search directions are lin-

early independent and y>u remains positive. Further, in this case

Dnew equals f 00(x�)�1 after n+1 steps. This important property is

called quadratic termination, cf. Section 4.1.

The SR1 formula has only been used very little in practice. This

is due to the fact that y>u may vanish, whereby numerical instability

is introduced or the updating breaks down.

A similar derivation gives the SR1 formula for approximations to

f 00(x) :
Bnew = B+

1
h>v

vv> with v = y �Bh ;

and similar comments can be made.

5.8. Preserving Positive De�niteness

Consider Newton's equation (5.2) or a Quasi{Newton equation based

on 5.13). The step is determined by

Gh = �f 0(x) ; (5.23)

where G = f 00(x) (Newton) or { in the case of Quasi{Newton,G = B

or G = D�1. Now, remember de�nition (2.11): h is downhill if

h>f 0(x) < 0. Taking the inner product with (�h) on both sides of

(5.23) we see that

h>f 0(x) = �h>Gh ;

and this is negative if G is positive de�nite.

5.9. The DFP Formula 68

Conclusion 5.24

Newton's equation (5.2) or the Quasi{Newton equation made

from (5.13) produces a downhill direction if the coe�cient ma-

trix is positive de�nite.

If we use D = I (the identity matrix) in all the steps in the Quasi{

Newton framework 5.14, then the method of steepest decent appears.

As discussed in Chapter 3 this method has good global convergence

properties, but the �nal convergence is often very slow. If, on the

other hand, the iterates are near the solution x�, a Newton method

(and also a Quasi{Newton method with good Hessian approximations)

will give good performance, close to quadratic convergence. Thus a

good strategy for the updating would be to use D close to I in the

initial iteration step and then successively let D approximate f 00(x)�1

better and better towards the �nal phase. This will make the iteration

start like the steepest descent and end up somewhat like Newton's

method. If in addition, the updating preserves positive de�niteness

for all coe�cient matrices, all steps will be downhill and a reasonable

rate of convergence can be expected, since f 00(x)�1 is positive (semi-

)de�nite at a minimizer.

5.9. The DFP Formula

One of the �rst updating formulae was proposed by Davidon in 1959.

This formula actually has the capability of preserving positive de�-

niteness. The formula was later developed by Fletcher and Powell in

1963, and it is called the DFP formula. A proper derivation of this

formula is very lengthy, so we con�ne ourselves to the less rigorous

presentation given by Fletcher (1987).

The �rst observation is that a greater exibility is allowed for

with a rank-two updating formulae, simply because more terms may

be adjusted. A symmetric rank-two formula can be written as

Dnew =D+ uu> + vv> ;

69 5. Newton-Type Methods

which inserted in the Quasi{Newton condition (5.17a) gives

h = Dy + uu>y + vv>y :

Since the second updating term has been included, there is no unique

determination of u and v. Fletcher points out that an obvious choice

is to try
u = �h ; v = �Dy :

Then the Quasi{Newton condition will be satis�ed if u>y=1 and

v>y=�1, and this yields the formula

DFP Updating

Dnew = D+

1
h>y

hh> �

1
y>v

vv> ;

where
h = xnew � x; y = f 0(xnew)� f 0(x); v = Dy :

(5.25)

This was the dominating formula for more than a decade and it

was found to work well in practice. In general it is more e�cient than

the conjugate gradient method (see Chapter 4). Traditionally it has

been used in Quasi{Newton methods with exact line search, but it

may also be used with soft line search as we shall see in a moment. A

method like this has the following important properties:

On quadratic objective functions with positive de�nite Hessian:

a) it terminates in at most n iterations with Dnew = f 00(x�)�1,

b) it generates conjugate directions,

c) it generates conjugate gradients if D0 = I ,

provided that the method uses exact line searches.

On general functions:

5.9. The DFP Formula 70

d) it preserves positive de�nite D-matrices if hqN
>y> 0 in all

steps,

e) it gives superlinear �nal convergence,

f) it gives global convergence for strictly convex objective func-

tions provided that the line searches are exact.

Here we have a method with superlinear �nal convergence (de�ned

in (2.6)). Methods with this property are very useful because they

�nish the iteration with fast convergence. Also, in this case

kx� � xnewk � kx� � xk for k !1 ;

implying that kxnew � xk can be used to estimate the distance from

x to x�.

Example 5.6. The proof of property d) in the above list is instructive,

and therefore we give it here:

Assume that D is positive de�nite. Then its Cholesky factor exists:

D = CC>, and for any non-zero z 2 IRn we use (5.25) to �nd

z>Dnewz = x>Dz+
(z>h)2

h>y

� (z>Dy)2

y>Dy

:

We introduced a=C>z, b=C>y and �= 6 (a;b), cf. (2.12), and get

z>Dnewz = a>a� (a>b)2

b>b

+
(z>h)2

h>y

= kak2 �1� cos2 �
�
+

(z>h)2

h>y

:

If h>y> 0, then both terms on the right-hand side are non-negative.

The �rst term vanishes only if �=0, i.e. when a and b are proportional,

which implies that z and y are proportional, z = �y with � 6=0. In

this case the second term becomes (�y>h)2=h>y which is positive due

to the basic assumption. Hence, z>Dnewz > 0 for any non-zero z and

Dnew is positive de�nite.

71 5. Newton-Type Methods

The essential condition h>y> 0 is called the curvature condition

because it can be expressed as

h>f 0new > h>f 0 : (5.26)

Notice, that if the line search slope condition (2.16) is satis�ed then

(5.26) is also satis�ed since h>f 0='0(0) and h>f 0new='
0(�s), where

'(�) is the line search function de�ned in section 2.1.

The DFP formula with exact line search works well in practice and

has been used widely. When the soft line search methods were intro-

duced, however, the DFP formula appeared less favorable because it

does not always work well with a soft line search. There is another

rank-two updating formula which works better, and the DFP formula

only has theoretical importance today. The corresponding formula for

updating approximations to the Hessian itself is rather long, and we

omit it here.

At this point we shall elaborate on the importance of using soft

line search in Quasi Newton methods. The number of iteration steps

will usually be larger with the soft line search when compared to an

exact line search, but the total number of function evaluations needed

to minimize f will be considerably smaller. Clearly, the purpose of

using soft line search is to be able to take the steps which are proposed

by the Quasi Newton method directly. In this way we can avoid a

noticeable number of function evaluations in each iteration step for the

determination of the exact minimum of f along the line. Further, in

the �nal iterations, the approximations to the second order derivatives

are usually remarkably good and the Quasi{Newton method obtains

a �ne rate of convergence (see below).

5.10. The BFGS Formulae

The �nal updating formulae to be discussed in these notes are known

as the BFGS formulae, and they are the most popular of all the up-

dating formulae, described in the literature. As it is the case with the

5.10. The BFGS Formulae 72

DFP formula, the BFGS formulae are di�cult to derive directly from

the requirements. However, they arrive in a funny way through the

concept of duality which will be discussed briey here: Remember the

Quasi{Newton conditions (5.17):

Dnewy = h and Bnewh = y :

The second equation has the same form as the �rst, except that y and

h are interchanged and Dnew is replaced by Bnew. This implies that

any updating formula forD which satis�es (5.17a) can be transformed

into an updating formula for B. Further, any formula for D has a

dual formula for B which is found by the substitution D $ B and

h$ y . Performing this operation on the DFP formula (5.25) yields

the following updating formula, which was discovered independently

by Broyden, Fletcher, Goldfarb and Shanno in 1970:

BFGS Updating

Bnew = B +

1
h>y

yy> �

1
h>u

uu> ;

where
h = xnew � x; y = f 0(xnew)� f 0(x); u = Bh :

(5.27)

This updating formula is very useful (Dennis and Schnabel (1984)

say \It is the best"), and it outperforms the DFP formula. The reader

is referred to Nocedal (1992) for an excellent explanation why this is

the case. If we perform the dual operation on the BFGS update

we return to the DFP updating, as we expected. The BFGS formula

produces B which converges to f 00(x�) and the DFP formula produces

D which converges to f 00(x�)�1.

Alternatively, we can �nd another set of matrices fDg which has

the same convergence, although it is di�erent from the D-matricess

produced by DFP. The BFGS formula is a rank two update, and there

are formulae which give the corresponding update for B�1 :

73 5. Newton-Type Methods

BFGS Updating for D

Dnew = D+ ahh> � b
�
hv> + vh>

�
;

where
h = xnew � x; y = f 0(xnew)� f 0(x); v = Dy;

b =

1
h>y

; a = b
�
1 + b(y>v)

�
:

(5.28)

The BFGS formulae are always used together with a soft line

search and as discussed above the procedure should be initiated with

the full Quasi{Newton step in each iteration step, i.e. the initial � in

2.25 should be one. Experiments show that it should be implemented

with a very loose line search; typical values for the parameters in

(2.24) are % = 10�4 and � = 0:9.

The properties a) { f) of the DFP formula also hold for the

BFGS formulae. Moreover, Powell has proved a better convergence

result for the latter formulae namely that they will also converge with

a soft line search on convex problems. Unfortunately, convergence

towards a stationary point has not been proved for neither the DFP

nor the BFGS formulae on general non-linear functions { no matter

which type of line search. Still, BFGS with soft line search is known

as the method which never fails to come out with a stationary point.

5.11. Quadratic Termination

We indicated above that there is a close relationship between the DFP-

update and the BFGS-updates. Still, their performances are di�erent

with the DFP update performing poorly with soft line searches. Broy-

den suggested to combine the two sets of formulae:

Broyden's One Parameter family

Dnew = D+ �WDFP + (1��)WBFGS ;

where 0 � � � 1 and WDFP and WBFGS are the

updating terms in (5.25) and (5.28), respectively.

(5.29)

5.12. Implementation of a Quasi{Newton Method 74

The parameter � can be adjusted during the iteration, see Fletcher

(1987) for details. He remarks that �=0, \clean" BFGS updating is

quite often the best.

We want to state a result for the entire Broyden family, a result

which consequently is true for both DFP and BFGS. The result is

concerned with quadratic termination:

The Broyden One Parameter Updating formula gives

quadratic termination for all values of � (0��� 1), pro-

vided that D0 is positive de�nite.

This implies that a Quasi{Newton method with exact line

searches determines the minimizer of a positive de�nite

quadratic after no more than n iteration steps (n being

the dimension of the space).

(5.30)

The basis of all the updating in this chapter is the Quasi{Newton

conditions (5.17a{b). This corresponds to a linear interpolation in

the gradient of the cost function. If the cost function is quadratic,

then its gradient is linear in x, and so is its approximation. When

the Quasi{Newton condition has been enforced in n steps, the two

linear functions agree in n+1 positions in IRn, and consequently the

two functions are identical. Iterate no. n+1, xnew, makes the gradient

of the approximation equal to zero, and so it also makes the gradient

of the cost function equal to zero; it solves the problem. The proviso

that the quadratic andD0 must be positive de�nite, ensures that xnew

is not only a stationary point, but also a minimizer.

5.12. Implementation of a Quasi{Newton Method

In this section we shall discuss some details of the implementation

and �nally show the Quasi{Newton algorithm with the di�erent parts

assembeled.

Based on the above discussion we have chosen a BFGS updating

formula, and for the reasons given p. 62, an update of the inverse Hes-

75 5. Newton-Type Methods

sian has been chosen. For student exercises and preliminary research

this update is adequate, but even though D in theory stays positive

de�nite, the rounding errors may cause ill conditioning and even in-

de�niteness. For professional codes updating of a factorization of the

Hessian is recommended such that the e�ect of round o� errors can

be treated properly. In the present context a less advanced remedy

is described which is to omit the updating if the curvature condition

(5.26) does not hold, since in this case the new D would not be posi-

tive de�nite. Actually, Dennis and Schnabel (1984) recommend that

the updating is skipped if

h>y � "
1=2
M

khk2 kyk2 ; (5.31)

where "M is the machine precision. As a �nal remark on the updat-

ing formula we shall warn against implementing (5.28) with O(n3)

operations { a frequent error.

We shall assume the availability of a soft line search such as Algo-

rithm 2.25. It is important to notice that all the function evaluations

take place during the line search. Hence, the values of f and f 0 at

the new point are recieved from the line search subprogram. In the

next iteration step these values are returned to the subprogram such

that f and f 0 for �=0 are ready for the next search. Sometimes the

gradient needs not be calculated as often as f . In a production code

the line search should only calculate f respectively f 0 whenever they

are needed.

The choice of the initial approximation to the inverse Hessian,

D0, must also be discussed. Traditionally it is recommended to use

D0 = I, the identity matrix. This D0 is of course positive de�nite

and the �rst step will be in the steepest descent direction.

Finally, we outline an algorithm for a Quasi{Newton method. Ac-

tually, the curvature condition (5.26) needs not be tested because it

is incorporated in the soft line search as stopping criterion (2.24b).

5.12. Implementation of a Quasi{Newton Method 76

Algorithm 5.32

Quasi{Newton Method with BFGS{Updating

begin

x := x0; D :=D0; k := 0; fInitialisationg

while kf 0(x)k > " and k < kmax

hqN :=D (�f 0(x)) fQuasi{Newton equationg

� := soft line search(x;hqN) fAlgorithm 2.25g

xnew := x + �hqN; k := k+1

if hTqNf
0(xnew) > hTqNf
0(x) fCondition (5.26)g

Update D fusing (5.28)g

x := xnew

end

Example 5.7. We consider Rosenbrock's function from Examples 4.3 and

5.5. As in the former, we have tried di�erent updating formulae and

di�erent line search methods. The line search parameters were chosen

as in Example 4.3.

With the starting point x0 = [�1:2; 1]>, the following numbers of

iteration steps and evaluations of f(x) and f 0(x) are needed to satisfy

the stopping criterion kf 0(x)k � 10�10,

Update by Line search # it. steps # fct. evals

DPF exact 23 295

DPF soft 31 93

BFGS exact 23 276

BFGS soft 29 68

The results are as expected: BFGS combined with soft line search needs

the smallest number of function evaluations to �nd the solution.

Below we give the iterates (cf. Figures 4.2, 4.3 and 5.4) and the values

of f(xk) and kf 0(xk)k1. As with the Damped Newton Method we have

superlinear �nal convergence.

77 5. Newton-Type Methods

−1.2 1

1

X1

X2

0 5 10 15 20 25 30
1e−15

1e−10

 1e−5

 1

f
||f’||

Figure 5.5: BFGS with soft line search

applied to Rosenbrock's function.

Top: iterates xk. Bottom: f(xk) and kf 0(xk)k1.

The number of iteration steps is about the same as in Example 5.5,

while the number of function evaluations is almost four times as big.

Note, however, that with Algorithm 5.32 each evaluation involves f(x)

and f 0(x), while each evalution in the Damped Newton Method also

involves the Hessian f 00(x). For many problems this is not available.

If it is, it may be costly: we need to compute 1
2
n(n+1 elements in the

symmetric matrix f 00(x), while f 0(x) has n elements only.

5.12. Implementation of a Quasi{Newton Method 78

Appendix

A. Symmetric, Positive De�nite Matrices

A matrix A2IRn�n is symmetric if A=A>, i.e. if aij =aji for all i; j.

De�nition

The symmetric matrix A2 IRn�n is

positive de�nite () for all x2 IRn; x6=0 : x>Ax > 0

positive semide�nite () for all x2 IRn; x6=0 : x>Ax � 0

(A.1)

Such matrices play an important role in optimization, and some useful

properties are listed in

Theorem A

Let A2IRn�n be symmetric and let A = LU, where L is a unit lower

triangular matrix and U is an upper triangular matrix. Then

1� (All uii > 0; i=1; : : : ; n) () (A is positive de�nite) .

If A is positive de�nite, then

2� The LU-factorization is numerically stable.

3� U = DL> with D = diag(uii).

4� A = CC>, the Cholesky factorization. C2 IRn�n is a lower trian-

gular matrix.

Proof: See e.g. Golub and Van Loan (1989) or Nielsen (1996).

A. Symmetric, Positive De�nite Matrices 80

A unit lower triangular matrix L is characterized by `ii = 1 and `ij = 0

for j>i. Note, that the LU-factorization A = LU is made without piv-

oting (which, by the way, could destroy the symmetry). Also note that

points 3�{4� give the following relation between the LU- and the Cholesky-

factorization
A = LU = LDL> = CC> (A.2a)

with

C = LD1=2 ; D1=2 = diag(
p
uii) : (A.2b)

The Cholesky factorization with test for positive de�niteness can be

implemented as follows. (This algorithm does not rely on (A.2), but is de-

rived directly from 4� in Theorem A).

Algorithm (A.3). Cholesky factorization

begin
k := 0; posdef := true fInitialisationg

while posdef and k < n

k := k+1

d := akk �
Pk�1

j=1
(ckj)

2

if d > 0 ftest for pos. def.g

ckk :=
p
d fdiagonal elementg

for i := k+1; : : : ; n fsubdiagonal elementsg

cik :=
�

aik �
Pk�1

j=1
cijckj

�
=ckk

else
posdef := false

end

The \cost" of this algorithm is O(n3) operations.

This algorithm can e.g. be used in Algorithm 5.11. Actually it is the

cheapest way to check positive-de�niteness.

The solution to the system

Ax = b

81 Appendix

can be computed via the Cholesky factorization: Inserting A = CC> we

see that the system splits into

Cz = b and C>x = z :

The two triangular systems are solved by forward- and back-substitution,

respectively.

Algorithm (A.4). Cholesky solve

begin

for k := 1; : : : ; n�1; n fforwardg

zk :=
�

bk �
Pk�1

j=1
ckjzj

�
=ckk

for k := n;n�1; : : : ; 1 fbackg

xk :=
�

zk �
Pn

j=k+1
cjkxj

�
=ckk

end

The \cost" of this algorithm is O(n2) operations.

B. Proof of Theorem 4.2

We shall use induction to show that for j=1; : : : ; n:

h>iHhj = 0 for all i < j : (B.1)

We use the notation gi = f 0(xi) and de�ne the search directions by hi =

xi � xi�1. Then (4.5) leads to

Hhr = gr � gr�1 ; (B.2)

and 4.6 and (4.10) combine to

hr+1 = �r+1
��gr + r�
�1
r hr

�
with r =

g>r gr

g>r�1gr�1

(B.3)

and �r+1 found by exact line search. Finally, we remind the reader of (4.9)

and (4.8)
h>rgr = 0 and ��1r+1h
>
r+1gr = �g>r gr : (B.4)

B. Proof of Theorem 4.2 82

Now, we are ready for the induction:

For j=1, (B.1) is trivially satis�ed, there is no hi vector with i<1.

Next, assume that (B.1) holds for all j=1; : : : ; k. Then it follows from the

proof of Theorem 4.1 that

g>khi = 0 for i=1; : : : ; k : (B.5)

If we insert (B.3), we see that this implies

0 = g>k
�
�gi�1 + i�1�
�1
i�1hi�1

�
= �g>kgi�1 :

Thus, the gradients at the iterates are orthogonal,

g>kgi = 0 for i=1; : : : ; k�1 : (B.6)

Now, we will show that (B.1) also holds for j = k+1 :

��1k+1h
>
iHhk+1 = h>iH

��gk + k�
�1
k hk

�

= �g>kHhi + k�
�1
k h>iHhk

= �g>k (gi � gi�1) + k�
�1
k h>iHhk :

For i< k each term is zero according to (B.1) for j�k and (B.5).

For i= k also the term g>kgk�1 = 0, and we get

��1k+1h
>
kHhk+1 = �g>kgk + k�

�1
k h>k (gk � gk�1)

= �g>kgk + k
�
0 + g>k�1gk�1

�
= 0 :

In the �rst reformulation we use both relations in (B.4), and next we use

the de�nition of k in (B.3).

Thus, we have shown that (B.1) also holds for j= k+1 and thereby

�nished the proof.

References

1. M. Al-Baali (1985): \Descent Property and Global Convergence of the

Fletcher-Reeves method with inexact linesearch",

IMA Journal on Num. Anal. 5, pp 121{124.

2. C. G. Broyden (1965): \A class of methods for solving nonlinear si-

multaneous equations", Maths. Comp. 19, pp 577{593.

3. H. P. Crowder & P. Wolfe (1972): \Linear Convergence of the Conju-

gate Gradient Method", IBM J. Res. Dev. 16, pp 431{433.

4. J. E. Dennis, Jr. & R.B. Schnabel (1983): \Numerical Methods for

Unconstrained Optimization and Nonlinear Equations", Prentice Hall.

5. R. Fletcher (1980): \Practical Methods of Optimization", vol 1,

John Wiley.

6. R. Fletcher (1987): \Practical Methods of Optimization", vol 2,

John Wiley.

7. A. A. Goldstein & J.F. Price (1967): \An E�ective algorithm for Min-

imization", Num. Math. 10, pp 184{189.

8. G. Golub & C.F. Van Loan (1989): \Matrix Computations",

John Hopkins Univ. Press.

9. D. Luenberger (1984): \Linear and Nonlinear Programming",

Addison-Wesley.

10. K. Madsen (1984): \Optimering uden bibetingelser" (in Danish),

H�fte 46, Numerisk Institut, DTH.

11. K. Madsen, H.B. Nielsen & O. Tingle� (1999): \Methods for Non-

Linear Least Squares Problems", IMM, DTU. Available at

http://www.imm.dtu.dk/�hbn/publ/H38.ps.gz

References 84

12. J. J. Mor�e & D.C. Sorenson (1982): \Newtons Method",

Argone Nat. Lab. Report ANL-82-8.

13. H.B. Nielsen (1996): \Numerisk Line�r Algebra" (in Danish),

IMM, DTU.

14. H.B. Nielsen (1999): \Damping Parameter in Marquardt's Method".

IMM, DTU. Report IMM-REP-1999-05. Available at

http://www.imm.dtu.dk/�hbn/publ/TR9905.ps.Z

15. J. Nocedal (1992): \Theory of Algorithms for Unconstrained Opti-

mization", in \Acta Numerica 1992", Cambridge Univ. Press.

Index

absolute descent method, 21

accumulation point, 13

Al-Baali, 41, 43

algorithm BFGS, 76

{ Cholesky, 80

{ Conjugate Gradient, 38

{ Descent Method, 16

{ Newton's Method, 49

{ Re�ne, 29

{ Soft Line Search, 28, 45, 75

{ Trust Region, 25

alternating variables, 7

analytic derivatives, 53

banana function, 46

BFGS updating, 72, 76

Broyden, 64, 72

Cholesky, 52, 62, 70, 79

conjugate directions, 35, 39, 41, 44

{ gradients, 36, 45

contours, 7, 12, 46, 51

convergence, 14, 21, 39, 43, 45,

50, 53, 68, 73

cost function, 5

Crowder, 43

cubic convergence, 51

curvature condition, 71

damped Newton, 55, 58, 77

Davidon, 68

de�nition: absolute descent, 19

{ conjugate directions, 35

{ descent direction, 19

{ local minimizer, 8

{ optimization problem, 5

{ positive de�nite, 79

{ stationary point, 9

Dennis, 62, 72, 75

descent direction, 16, 19

DFP formula, 68, 76

di�erence approximation, 61

duality, 72

exact line search, 22, 31, 47, 71,

76
factorization, 52, 58, 70, 75, 79

�nite di�erence, 61

Fletcher, 21, 26, 41, 44, 45, 47, 50,

55, 57, 62, 68, 72, 74

utter, 57

framework, 62

gain factor, 24, 57

GAMS, 2

Index 86

global convergence, 13, 42, 53,

68, 70

{ minimizer, 6

Goldfarb, 72

Goldstein, 54

Golub, 79

gradient, 8

Hessian, 9, 37, 53, 61, 69

hybrid method, 34, 54

ill-conditioned, 52

implementation, 45, 53, 74

Internet, 2

inverse Hessian, 61, 73, 75

level curves, 7, 12, 46, 51

Levenberg, 56, 58

line search, 16, 19, 26{34, 47,

54, 62, 71, 75

linear approximation, 24

{ convergence, 14, 45

local minimizer, 6, 8{10, 17

Luenberger, 56

machine precision, 75

Marquardt, 56, 58

maximizer, 5, 11, 53

minimizer, 5, 11

Mor�e, 57

Newton's method, 49, 50, 55

Nielsen, 57, 79

Nocedal, 38, 40, 68

objective function, 5

outer product, 64

Polak, 42, 44, 45, 47

positive de�nite, 10, 38, 50, 53,

58, 68, 79{81

Powell, 42, 68, 73

Price, 54

pseudoangle, 19

quadratic approximation, 24

{ convergence, 14, 48, 50, 54, 68

{ model, 37, 49, 56

{ termination, 37, 67, 74

Quasi{Newton, 62, 76

{ condition, 63, 72, 74

rank-one matrix, 64, 66

rank-two matrix, 64

{ updating, 68 Reeves, 41, 45, 47

re�ne, 29

resetting, 42

Ribi�ere, 42, 44, 45, 47

Rosenbrock's function,46, 59, 76

saddle point,, 10, 53

Schnabel, 62, 72, 75

semide�nite, 11, 79

Shanno, 72

soft line search, 22, 71, 75, 76

Sorenson, 57

SR1 formula, 66

stationary point, 9

steepest descent, 32, 36, 42,

54, 55, 75

Stiefel's cage, 7, 34

stopping criteria, 16, 39, 45, 69, 76

superlinear convergence, 14,

59, 70

symmetric matrix, 64, 66, 79

Taylor expansion, 8, 49

tricky function, 50, 59

trust region, 24, 56

updating, 62, 66, 68, 72, 74, 76

{ strategy, 57

Wolfe, 43

