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ABSTRACT 
 

This thesis contributes to the development of novel methods and techniques for 

computer-aided electromagnetics (EM)-based modeling and design of microwave circuits 

exploiting two previously unrelated technologies: space mapping (SM) and artificial 

neural networks (ANNs). 

The conventional approach to EM-based modeling of microwave circuits is 

reviewed, as well as other state-of-the-art neuromodeling techniques.  The fundamental 

space mapping concept is also reviewed.  Developing neuromodels based on space 

mapping technology is addressed.  Several SM-based neuromodeling techniques are 

described.  Contrast with other neuromodeling approaches is realized. 

An algorithmic procedure to design, called Neural Space Mapping (NSM) 

optimization, is described.  NSM enhances an SM-based neuromodel at each iteration.  

Other techniques for optimization of microwave circuits using artificial neural networks 

are reviewed. 

Efficient EM-based statistical analysis and yield optimization of microwave 

components using SM-based neuromodels is described.  Other yield-driven EM 

optimization strategies are briefly reviewed.  An innovative strategy to avoid extra EM 

simulations when asymmetric variations in the physical parameters are assumed is 

described. 



iv ABSTRACT 

 

Neural Inverse Space Mapping (NISM) optimization for EM-based microwave 

design is described.  A neural network approximates the inverse mapping at each 

iteration.  The NISM step simply consists of evaluating this neural network at the optimal 

empirical solution.  NISM step is proved to be a quasi-Newton step when the amount of 

nonlinearity in the inverse neuromapping is small.  NISM optimization is compared with 

other SM-based optimization algorithms. 

The theoretical developments are implemented using available software on 

several advanced and industrially relevant microwave circuits. 

Suggestions for further research are provided. 
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1 

Chapter 1 

INTRODUCTION 
 

 

For nearly a half a century computer-aided design (CAD) of electronic circuits 

have evolved from a set of special purpose, rudimentary simulators and techniques to a 

variety of highly flexible and interactive, general purpose software systems, with 

amazing visualization capabilities. 

The first efforts to incorporate the computer as a design tool were made in the 

well-established area of filter synthesis (see Director, 1973).  By the middle of the 1950s 

a number of successful filter design techniques had been developed.  Aaron (1956) 

proposed using a least-squares approach for the realization of transfer functions that 

approximate a given set of design specifications.  Historical contributions by Desoer and 

Mitra (1961), Calahan (1965), and Smith and Temes (1965) followed after Aaron’s 

philosophy, where interactive optimization methods were proposed for specific classes of 

filters. 

At the same time that synthesis procedures were being developed, significant 

work was being carried out in the area of circuit simulation: a good general-purpose 

analysis program was required in order for the computer to be an effective design tool.  

Similar to the field of network synthesis, the initial attempts at computerized circuit 

simulation were limited to more or less direct implementation of standard analysis 
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methods.  Some of the first general-purpose simulation programs appeared: TAP (Branin, 

1962), CORNAP (Pottle, 1965), ECAP (IBM, 1965) and AEDNET (Katzenelson, 1966). 

With the advances in sparse matrix methods, numerical integration techniques, 

and sensitivity calculation methods (adjoint network approach), the first computationally 

efficient, general purpose simulation programs became available: ECAP-II (Branin et. al., 

1971) and CANCER (Nagel and Rohrer, 1971).  From the latter evolved SPICE during 

the mid-1970s, which became the most popular general purpose circuit simulator (see 

Tuinenga, 1992). 

In parallel to the development of circuit modeling, simulation and optimization, 

numerical electromagnetics was also emerging.  The most influential methods for 

computational electromagnetics were proposed in late 1960s and early 1970s: the Finite 

Difference Time Domain method (Yee, 1966), the Method of Moments (Harrington, 

1967), the Finite Element method for electrical engineering (Silvester, 1969), and the 

Transmission-Line Matrix method (Akhtarzad and Johns, 1973). 

The increasing availability of low-cost yet powerful personal computers in the 

1980s and 1990s, as well as the continuing progress in numerical techniques and software 

engineering, made from the CAD systems an every day tool used by most electronic 

designers.  This explosion in software tools evolved in three relatively separated roads: 

low frequency mixed-mode CAD, high frequency analog CAD, and electromagnetic 

CAD. 

The arena of low frequency mixed-mode CAD typically includes the areas of 

digital design languages (Verilog, VHDL, etc.), analog/mixed signal design tools, digital 

IC design, active device modeling, IC/ASIC design, PLD/FPGA design, PC-board 

design, hardware/software co-design and co-verification, functional and physical design.  
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These CAD tools have been significantly shaped by the IC industry needs, and they are 

usually referred to as electronic design automation (EDA) tools.  Martin (1999) and 

Geppert (2000) provide an analysis and forecast in this arena.  A more comprehensive 

review and perspective is provided by Camposano and Pedram (2000). 

The field of high frequency analog CAD has focused on the development of 

circuit-theoretic design tools for flexible and fast interactive operation.  They usually 

provide modeling capabilities based on quasi-static approximations, linear and nonlinear 

circuit simulation, frequency domain, steady-state time domain and transient analysis.  

Some of these tools provide powerful optimization algorithms.  Some of them also 

provide interfacing capabilities to electromagnetic field solvers for design verification 

and optimization.  Examples of this family of tools are Touchstone (1985), Super-

Compact (1986), OSA90 (1990) and Transim (Christoffersen, Mughal and Steer, 2000). 

The arena of EM field solvers evolved in four different classes of simulators: 2-

dimensional, 3-dimensional planar (laterally open or closed box), and 3-dimensional 

arbitrary-geometry.  Swanson (1991, 1998) made an excellent review of commercially 

available CAD tools for electromagnetic simulation.  Mirotznik and Prather (1997) 

provided a useful guide on how to choose EM software. 

The needs of the microwave and wireless electronics industry have significantly 

shaped the evolvement of CAD tools for EM and high frequency circuit design.  

Microwave structures working at increasingly higher frequencies made classical 

empirical models less reliable in predicting the actual behavior of manufactured 

components.  Emerging microwave technologies (such us coplanar waveguide (CPW) 

circuits, multiple-layered circuits, and integrated circuit antennas) pushed towards the 

development of more EM-based models.  Stringent design specifications and the drive for 
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time-to-market in the wireless industry demanded sophisticated optimization-based 

design algorithms. 

The rapid growth in the communications and high-speed electronics industries is 

demanding more integration between these three CAD arenas.  Computer-aided 

electronic design is now claiming a holistic approach due to the facts that switching 

speeds in digital hardware are now in the microwave range, and that RF modules are now 

part of commercial systems-on-a-chip.  Additionally, thermal and mechanical 

considerations are increasingly impacting this design process, enforcing an even more 

multidisciplinary and interrelated approach for the future automated design. 

A recent new trend in microwave and millimeter-wave CAD is the use of 

artificial neural networks (ANNs) for efficient exploitation of EM simulators (see Gupta, 

1998).   Similarly, space mapping (SM) emerged as an innovative approach to automated 

microwave design that combines the accuracy of EM field solvers with the speed of 

circuit simulators (see Bandler et. al., 1994).  The work in this thesis aims at the 

intersection of these two emerging technologies. 

This thesis focuses on the development of novel methods and techniques for 

computer aided modeling, design and optimization of microwave circuits exploiting two 

previously unconnected technologies: space mapping and artificial neural networks. 

Chapter 2 addresses the development of artificial neural network models based 

on space mapping technology.  We review the fundamental space mapping concept.  We 

also review the conventional approach to EM-based modeling of microwave devices 

using ANNs, as well as other state-of-the-art techniques for neuromodeling.  The SM-

based neuromodeling strategy is described.  We illustrate how frequency-sensitive 

neuromappings can effectively expand the range of validity of many empirical models 
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based on quasi-static approximations.  Several practical microwave examples illustrate 

our techniques. 

 In Chapter 3 we change our focus of interest from modeling to design by 

optimization.  We describe in this chapter an algorithmic procedure to design by 

enhancing an SM-based neuromodel at each iteration.  Neural Space Mapping (NSM) 

optimization exploits the modeling techniques proposed in Chapter 2.  Other techniques 

for optimization of microwave circuits using ANNs are briefly reviewed.  We also review 

the concept of space mapping with frequency included.  NSM optimization requires a 

number of up-front EM-simulations at the starting point, and employs a novel procedure 

to avoid troublesome parameter extraction at each iteration.  An HTS microstrip filter and 

a bandstop microstrip filter with open stubs illustrate our algorithm. 

 Chapter 4 deals with the EM-based statistical analysis and yield optimization of 

microwave components using SM-based neuromodels.  We briefly review other yield-

driven EM optimization strategies.  We formulate the problem of statistical analysis and 

design.  We describe a creative way to avoid extra EM simulations when asymmetric 

variations in the physical parameters are considered.  The EM-based yield analysis and 

optimization of an HTS microstrip filter illustrate our strategies. 

 In Chapter 5 we describe Neural Inverse Space Mapping (NISM): an efficient 

optimization method for EM-based microwave design.  NISM is the first SM-based 

optimization algorithm that explicitly makes use of the inverse of the mapping from the 

EM input space to the empirical input space.  A neural network approximates this inverse 

mapping at each iteration.  NISM is contrasted with NSM as well as with other SM-based 

optimization algorithms through several design examples. 

We conclude the thesis in Chapter 6, providing some suggestions for further 
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research. 

The author’s original contributions presented in this thesis are: 

(1) Formulation and development of the Space Mapping-based Neuromodeling 

techniques, and their implementation using the software system OSA90/hope 

(1997). 

(2) Formulation and development of the Neural Space Mapping (NSM) optimization 

algorithm, as well as its implementation in the software system OSA90/hope 

(1997). 

(3) Formulation and implementation of the EM-based yield optimization utilizing 

Space Mapping-based neuromodels. 

(4) Formulation and development of the Neural Inverse Space Mapping (NISM) 

Optimization algorithm, as well as its fully automated implementation in 

Matlab (1998). 

(5) Implementation in Matlab (1998) of a fully automated algorithm for training 

artificial neural networks following a network growing strategy. 

(6) Formulation and implementation in Matlab (1999) of a fully automated 

algorithm for statistical parameter extraction. 

(7) Design of graphical representations for algorithmic strategies typically used in 

modeling and optimization of microwave circuits. 

In collaboration with J.W. Bandler, F. Wang and Q.J. Zhang, the author 

originally implemented Space Mapping-based neuromodels using the software system 

NeuroModeler (1999). 

Together with M.H. Bakr, J.W. Bandler, K. Madsen and J. Søndergaard the 
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author collaborated in the original development of the Trust Region Aggressive Space 

Mapping optimization algorithm exploiting surrogate models. 

Together with M.H. Bakr, J.W. Bandler, M.A. Ismail, Q.S. Cheng and S. Porter 

the author collaborated in the development of the software system SMX (2001). 

Together with J.W. Bandler, N. Georgieva, M.A. Ismail and Q.J. Zhang, the 

author collaborated in the original development of a generalized Space Mapping tableau 

approach to device modeling. 

Together with J.W. Bandler and M.A. Ismail, the author collaborated in the 

original development of an expanded Space Mapping design framework exploiting 

preassigned parameters. 
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Chapter 2 

SPACE MAPPING BASED 
NEUROMODELING 

2.1 INTRODUCTION 

A powerful new concept in neuromodeling of microwave circuits based on Space 

Mapping technology is described in this chapter.  The ability of Artificial Neural 

Networks (ANN) to model high-dimensional and highly nonlinear problems is exploited 

in the implementation of the Space Mapping concept.  By taking advantage of the vast set 

of empirical models already available, Space Mapping based neuromodels decrease the 

number of EM simulations for training, improve generalization ability and reduce the 

complexity of the ANN topology with respect to the classical neuromodeling approach. 

Five innovative techniques are proposed to create Space Mapping based 

neuromodels for microwave circuits: Space Mapped Neuromodeling (SMN), Frequency-

Dependent Space Mapped Neuromodeling (FDSMN), Frequency Space Mapped 

Neuromodeling (FSMN), Frequency Mapped Neuromodeling (FMN) and Frequency 

Partial-Space Mapped Neuromodeling (FPSM).  Excepting SMN, all these approaches 

establish a frequency-sensitive neuromapping to expand the frequency region of accuracy 

of the empirical models already available for microwave components that were 

developed using quasi-static analysis.  We contrast our approach with the classical 

neuromodeling approach employed in the microwave arena, as well as with other state-
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of-the-art neuromodeling techniques. 

Simultaneously with the work of Devabhaktuni, Xi, Wang and Zhang (1999), we 

used for the first time Huber optimization to efficiently train the ANNs (see Bandler, 

Ismail, Rayas-Sánchez and Zhang, 1999a). 

The Space Mapping based neuromodeling techniques are illustrated by two case 

studies: a microstrip right angle bend and a high-temperature superconducting (HTS) 

quarter-wave parallel coupled-line microstrip filter. 

2.2 THE SPACE MAPPING CONCEPT 

Space Mapping (SM) is a novel concept for circuit design and optimization that 

combines the computational efficiency of coarse models with the accuracy of fine 

models.  The coarse models are typically empirical equivalent circuit engineering models, 

which are computationally very efficient but often have a limited validity range for their 

parameters, beyond which the simulation results may become inaccurate.  On the other 

hand, detailed or “fine” models can be provided by an electromagnetic (EM) simulator, 

or even by direct measurements: they are very accurate but CPU intensive.  The SM 

technique establishes a mathematical link between the coarse and the fine models, and 

directs the bulk of CPU intensive evaluations to the coarse model, while preserving the 

accuracy and confidence offered by the fine model.  The SM technique was originally 

developed by Bandler, Biernacki, Chen, Grobelny and Hemmers (1994). 

Let the vectors xc and xf represent the design parameters of the coarse and fine 

models, respectively, and Rc(xc) and Rf (xf ) the corresponding model responses.  Rc is 

much faster to calculate but less accurate than Rf . 
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As illustrated in Fig. 2.1 the aim of SM optimization is to find an appropriate 

mapping P from the fine model parameter space xf to the coarse model parameter space 

xc 

)( fc xPx =  (2-1) 

such that 

)())(( fffc xRxPR ≈  (2-2) 

Once a mapping P valid in the region of interest is found, the coarse model can 

be used for fast and accurate simulations in that region. 

2.3 NEUROMODELING MICROWAVE CIRCUITS 

Artificial neural networks are particularly suitable in modeling high-dimensional 

and highly nonlinear devices, as those found in the microwave area, due to their ability to 

learn and generalize from data, their non-linear processing nature, and their massively 

parallel structure. 

It has been shown by White, Gallant, Hornik, Stinchcombe and Wooldridge 

(1992) that standard multilayer feedforward networks can approximate any measurable 

function to any desired level of accuracy, provided a deterministic relationship between 

fx
)( ff xR

fine
model

coarse
modelcx

)( cc xR

 

fx cx
such that

)( fc xPx =

)())(( fffc xRxPR ≈
 

Fig. 2.1 Illustration of the aim of Space Mapping (SM). 
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input and target exists.  Following Haykin (1999), ANN that are too small cannot 

approximate the desired input-output relationship, while those with too many internal 

parameters perform correctly on the learning set, but give poor generalization ability. 

According to Burrascano and Mongiardo (1999), the most widely used ANN 

paradigm in the microwave arena is the multi-layer perceptron (MLP), which is usually 

trained by the well established backpropagation algorithm. 

ANN models are computationally more efficient than EM or physics-based 

models and can be more accurate than empirical models.  ANNs are suitable models for 

microwave circuit yield optimization and statistical design, as demonstrated by Zaabab, 

Zhang and Nakhla (1995) as well as by Burrascano, Dionigi, Fancelli and Mongiardo 

(1998). 

In the conventional neuromodeling approach, an ANN is trained such that it 

approximates the fine model response Rf in a region of interest for the design parameters 

xf and operating frequency ω, as illustrated in Fig. 2.2, where vector w contains the 

internal parameters of the ANN (weighting factors, bias, etc.).  Once the ANN is trained 

with sufficient learning samples, that is, once the optimal w is found, the ANN can be 

used as a fast and accurate model within the region of interest.  The complexity of the 

ANN

fine
model

w

Rf

≈ Rf

xf

ω

 
Fig. 2.2 Conventional neuromodeling approach. 
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ANN must be properly selected: the number of internal free parameters has to be 

sufficiently large to achieve a small learning error, and sufficiently small to avoid a poor 

generalization performance. 

This training can be seen as an optimization problem where the internal 

parameters of the neural network are adjusted such that the ANN model best fits the 

training data. 

A large amount of training data is usually needed to ensure model accuracy.  For 

microwave circuits this training data is usually obtained by either EM simulation or by 

measurement.  Generating a large amount of training data can be very expensive for 

microwave problems because the simulation/measurements must be performed for many 

combinations of different values of geometrical, material, process and input signal 

parameters.  This is the main drawback of the conventional ANN modeling approach.  

Without sufficient training data, the neural models developed may not be reliable.  

Additionally, it has been shown by Stone (1982) that the number of learning samples 

needed to approximate a function grows exponentially with the ratio between the 

dimensionality and its degree of smoothness; this well known effect is called “the curse 

of dimensionality”, e.g., Haykin (1999). 

A popular alternative to reduce the dimension of the learning set is to carefully 

select the learning points using the Design of Experiments (DoE) methodology, to ensure 

adequate parameter coverage, as in the work by Creech, Paul, Lesniak, Jenkins and 

Calcatera (1997). 

Another way to speed up the learning process is proposed in the work of 

Burrascano and Mongiardo (1999) by means of preliminary neural clusterization of 

similar responses using the Self Organizing Feature Map (SOM) approach. 
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Innovative strategies have been proposed to reduce the learning data needed and 

to improve the generalization capabilities of an ANN by incorporating empirical models: 

the hybrid EM-ANN modeling approach, the Prior Knowledge Input (PKI) modeling 

method, and the Knowledge Based ANN (KBNN) approach.  

Proposed by Watson and Gupta (1996), the Hybrid EM-ANN modeling approach 

makes use of the difference in S-parameters between the available coarse model and the 

fine model to train the corresponding neural network, as illustrated in Fig. 2.3.  The 

number of fine model simulations is reduced due to a simpler input-output relationship. 

The Hybrid EM-ANN method is also called Difference Method. 

In the Prior Knowledge Input (PKI) method, developed by Watson, Gupta and 

Mahajan (1998), the coarse model output is used as input for the ANN in addition to the 

other inputs (physical parameters and frequency).  The neural network is trained such that 

its response is as close as possible to the fine model response for all the data in the 

training set, as illustrated in Fig. 2.4.  According to Watson, Gupta and Mahajan (1998), 

the PKI approach exhibits better accuracy than the EM-ANN approach, but it requires a 

coarse
model

ANN

fine
model

w

ω Rf

Rc

∆R

≈ ∆R

xf

coarse
model

ANN

+

EM-ANN model

∆R

Rc

≈ Rf

ω

xf

 
(a)                                                                         (b) 

Fig. 2.3 EM-ANN neuromodeling concept: (a) EM-ANN neuromodeling, (b) EM-ANN 
model. 
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more complex ANN. 

A detailed description of the PKI method as well as numerous illustrations of the 

Hybrid EM-ANN method can be found in the work by Zhang and Gupta (2000). 

In the knowledge based ANN approach (KBNN), developed by Wang and Zhang 

(1997), the microwave empirical or semi-analytical information is incorporated into the 

internal structure of the ANN, as illustrated in Fig. 2.5. 

Knowledge Based ANNs are non fully connected networks, with one or several 

layers assigned to the microwave knowledge in the form of single or multidimensional 

functions, usually obtained from available analytical models based on quasi-static 

approximations. 

By inserting the microwave empirical formulas into the neural network structure, 

the empirical formulas can be refined or adjusted as part of the overall neural network 

training process.  Since these empirical functions are used for some neurons instead of 

standard activation functions, knowledge based neural networks do not follow a regular 

multilayer perceptron and are trained using other methods than the conventional 

coarse
model

ANN

fine
model

w

ω

xf

Rc

≈ Rf

Rf

coarse
model

ANN

PKI model

Rc

≈ Rfxf

ω

 
(a)                                                                         (b) 

Fig. 2.4 PKI neuromodeling concept: (a) PKI neuromodeling, (b) PKI model. 
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backpropagation.  Two excellent references for KBNNs are provided by Wang (1998) 

and by Zhang and Gupta (2000). 

2.4 SPACE MAPPING BASED NEUROMODELING 

We propose innovative schemes to combine SM technology and ANN for the 

modeling of high frequency components.  The fundamental idea is to construct a 

nonlinear multidimensional vector mapping function P from the fine to the coarse input 

space using an ANN.  This can be done in a variety of ways, to make a better use of the 

coarse model information for developing the neuromodel.  The implicit knowledge in the 

empirical
functions

ANN

fRfine
model

w

input
layer

output
layer

ANN

≈ Rf

xf

ω
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Fig. 2.5 KBNN neuromodeling concept: (a) KBNN neuromodeling, (b) KBNN model. 
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coarse model, that can be considered as an “expert”, not only allows us to decrease the 

number of learning points needed, but also to reduce the complexity of the ANN and to 

improve the generalization performance. 

In the Space Mapped Neuromodeling (SMN) approach the mapping from the fine 

to the coarse parameter space is implemented by an ANN.  Fig. 2.6 illustrates the SMN 

concept.  We have to find the optimal set of the internal parameters of the ANN, such that 

the coarse model response is as close as possible to the fine model response for all the 

learning points. 

The mapping can be found by solving the optimization problem 

TT
l

TT ][min 21 eee
w

"  (2-3)

where vector w contains the internal parameters of the neural network (weights, bias, etc.) 

selected as optimization variables, l is the total number of learning samples, and ek is the 

error vector given by 

),(),( jccjiffk ωω xRxRe −=  

)(
ifc xPx =  

 
(2-4) 

(2-5)
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(a)                                                                 (b) 

Fig. 2.6 Space Mapped neuromodeling concept: (a) SMN neuromodeling, (b) SMN 
model. 
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with 

pBi ,,1…=  
 

(2-6)

pFj ,,1…=  

)1( −+= iFjk p  

(2-7) 

(2-8)

where Bp is the number of training base points for the input design parameters and Fp is 

the number of frequency points per frequency sweep.  It is seen that the total number of 

learning samples is l = Bp Fp.  The specific characteristics of P depend on the ANN 

paradigm chosen, whose internal parameters are in w. 

In this work, a Huber norm is used in (2-3), exploiting its robust characteristics 

for data fitting, as shown by Bandler, Chen, Biernacki, Gao, Madsen and Yu (1993). 

Once the mapping is found, i.e., once the ANN is trained with an acceptable 

generalization performance, a space mapped neuromodel for fast, accurate evaluations is 

immediately available. 

2.4.1 Including Frequency in the Neuromapping 

Many of the empirical models already available for microwave circuits were 

developed using methods for quasi-static analysis.  For instance, in the case of microstrip 

circuits, it is often assumed that the mode of wave propagation in the microstrip is pure 

TEM, as indicated by Gupta, Garg and Bahl (1979).  This implies that the effective 

dielectric constant εe and the characteristic impedance Zo do not vary with frequency.  

Nevertheless, non-TEM behavior causes εe and Zo to be functions of frequency.  

Therefore, these empirical models usually yield good accuracy over a limited range of 

low frequencies.  
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A method to directly overcome this limitation is by establishing a frequency-

sensitive mapping from the fine to the coarse input spaces.  This is realized by 

considering frequency as an extra input variable of the ANN that implements the 

mapping. 

In the Frequency-Dependent Space Mapped Neuromodeling (FDSMN) approach, 

illustrated in Fig. 2.7, both coarse and fine models are simulated at the same frequency, 

but the mapping from the fine to the coarse parameter space is dependent on the 

frequency.  The mapping is found by solving the same optimization problem stated in 

(2-3) but substituting (2-4) and (2-5) by 

),(),( jccjiffk ωω xRxRe −=  

),( jifc ωxPx =  

 
(2-9) 

(2-10)

With a more comprehensive scope, the Frequency Space Mapped Neuromodeling 

(FSMN) technique establishes a mapping not only for the design parameters but also for 

the frequency variable, such that the coarse model is simulated at a mapped frequency ωc 

to match the fine model response.   
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Fig. 2.7 Frequency-Dependent Space Mapped Neuromodeling concept: (a) FDSMN 
neuromodeling, (b) FDSMN model. 
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FSMN is realized by adding an extra output to the ANN that implements the 

mapping, as shown in Fig. 2.8.  The mapping is found by solving the same optimization 

problem stated in (2-3) but substituting (2-4) and (2-5) by 

),(),( cccjiffk ωω xRxRe −=  

),( jif
c

c ω
ω

xP
x

=



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


 

 
(2-11) 

 

(2-12)

It is common to find microwave problems where the equivalent circuit model 

behaves almost as the electromagnetic model does but with a shifted frequency response, 

i.e., the shapes of the responses are nearly identical but shifted.  For those cases, a good 

alignment between both responses can be achieved by simulating the coarse model at a 

different frequency from the real frequency used by the fine model. 

The Frequency Mapped Neuromodeling (FMN) technique implements this 

strategy, as shown in Fig. 2.9, by simulating the coarse model with the same physical 

parameters used by the fine model, but at a different frequency ωc to align both 

responses. 
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(a)                                                                        (b) 

Fig. 2.8 Frequency Space Mapped Neuromodeling concept: (a) FSMN neuromodeling, 
(b) FSMN model. 
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In the FMN technique the mapping is found by solving the same optimization 

problem stated in (2-3) but replacing (2-4) and (2-5) by 

),(),( cifcjiffk ωω xRxRe −=  

),( jifc P ωω x=  

 
(2-13) 

(2-14)

Mapping the whole set of physical parameters, as in the SMN, FDSMN and 

FSMN techniques, might lead to singularities in the coarse model response during 

training.  This problem is overcome by establishing a partial mapping for the physical 

parameters, making an even more efficient use of the implicit knowledge in the coarse 

model.  We have found that mapping only some of the physical parameters can be 

enough to obtain acceptable accuracy in the neuromodel for many practical microwave 

problems.  This allows us a significant reduction in the ANN complexity w.r.t. the SMN, 

FDSMN and FSMN techniques and a significant reduction in the time for training, 

because fewer optimization variables are used.  Frequency Partial-Space Mapped 

Neuromodeling (FPSMN) implements this idea, illustrated in Fig. 2.10. 
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(a)                                                                        (b) 

Fig. 2.9 Frequency Mapped Neuromodeling concept: (a) FMN neuromodeling, (b) 
FMN model. 
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The selection of the physical parameters to be mapped in the FPSMN technique 

can be realized by the user, who usually has a good understanding of the physical 

structure and is able to detect the most relevant parameters by inspection.  When this 

experience is not available, we can select the parameters to be mapped in FPSMN by 

using the sensitivity information on the coarse model: the sensitivity of the coarse model 

response w.r.t. each coarse model parameter can be calculated inexpensively, and this 

information can be used as a criterion to select the parameters to be mapped. 

In the FPSMN technique the mapping is found by solving the same optimization 

problem stated in (2-3) but replacing (2-4) and (2-5) by 

),,(),( ccifcjiffk ωω ••−= xxRxRe  
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(2-15) 

 

(2-16)

where 
if

•x  vector contains a suitable subset of the design physical parameters 
ifx  at the 

ith training base point. 
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(a)                                                                        (b) 

Fig. 2.10 Frequency Partial-Space Mapped Neuromodeling concept: (a) FPSMN 
neuromodeling, (b) FPSMN model. 
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Finally, there can be microwave problems where the complete set of responses 

contained in Rf is difficult to approximate using a mapped coarse model with a single 

ANN.  In those cases, the learning task can be distributed among a number of ANNs, 

which in turn divides the output space into a set of subspaces.  The corresponding ANNs 

can then be trained individually, to match each response (or subset of responses) 

contained in Rf .  This implies the solution of several independent optimization problems 

instead of a single one. 

2.4.2 Starting Point and Learning Data Samples 

The starting point for the optimization problem stated in (2-3) is the initial set of 

internal parameters of the ANN, denoted by w(0), which is chosen assuming that the 

coarse model is actually a good model and therefore the mapping is not necessary.  In 

other words, w(0) is chosen such that the ANN implements a unit mapping P (xc = xf 

and/or ωc = ω).  This is applicable to the five SM-based neuromodeling techniques 

previously described. 

The ANN must be trained to learn the mapping between the fine and the coarse 

input spaces within the region of interest.  In order to maintain a reduced set of learning 

data samples, an n-dimensional star set for the base learning points (see Fig. 2.11) is 

considered in this work, as in the work by Biernacki, Bandler, Song and Zhang (1989).  It 

is seen that the number of learning base points for a microwave circuit with n design 

parameters is 12 += nBp .  

Since we want to maintain a minimum number of learning points (or fine 

evaluations), the complexity of the ANN is critical.  To avoid a poor generalization 
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performance, we have to use the simplest ANN that gives an acceptable learning error 

over the region of training and adequate generalization performance in the testing set (see 

Haykin, 1999). 

2.5 SPACE MAPPING BASED NEUROMODELS USING 3-
LAYER PERCEPTRONS 

We use 3-layer perceptrons (3LP) to implement the mapping in all our SM-based 

neuromodeling techniques.  Fig. 2.12 shows the realization of the SMN approach with a 

3-layer perceptron with h hidden neurons.  Notice that the FDSMN approach can be 

implemented by including an additional input for the frequency ω and enabling a vn+1 in 

the 3-layer perceptron in Fig. 2.12.  The adaptation of this paradigm to all the other three 

cases is realized in a similar manner, by considering an additional output for the mapped 

frequency ωc and disabling the corresponding inputs and/or outputs. 

In Fig. 2.12, xf ∈ ℜn is the vector containing the n input physical parameters to 

be mapped, v ∈ ℜn contains the input signals after scaling, z ∈ ℜh is the vector 

1fx

2fx

3fx
 

Fig. 2.11 Three-dimensional star set for the learning base points. 
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containing the signals from the h hidden neurons, y ∈ ℜn is the vector of output signals 

before scaling, and vector xc ∈ ℜn has the neuromapping output. 

In order to control the relative importance of the different input parameters and to 

define a suitable dynamical range for the region of interest, an input scaling such that 

11 ≤≤− iv  is used,  
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The hidden layer signals are given by 
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where )(⋅ϕ  is the activation function used for all hidden neurons and h
iw  is the vector of 

synaptic weights of the i-th hidden neuron, 
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Fig. 2.12 SM neuromapping with 3-layer perceptron. 
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and hb  is the vector of bias elements for the hidden neurons,  

[ ]Th
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(2-20)

The output layer signals are given by 

o
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where o
iw  is the vector of synaptic weights of the i-th output neuron,  
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and ob  is the vector of bias elements for the output neurons,  

[ ]To
n

ooo bbb "21=b  
 

(2-23)

To provide an equivalent scaling of the output signals to that one used in the 

input,  

)()1(
2
1

minmaxmin fifiifici xxyxx −++=  ,  ni ,,2,1 "=  
 

(2-24)

The vector w containing the total set of internal parameters of the ANN taken as 

optimization variables for a three layer perceptron is then defined as 

TTo
n

ToTh
h

ThToTh ])()()()()()([ 11 wwwwbbw ……=  
 

(2-25)

From (2-19), (2-20), (2-22) and (2-23) it is seen that the number of optimization 

variables involved in solving (2-3) following a SMN technique is n(2h+1)+h. 

As stated in Section 2.4.2, we use a unit mapping as the starting point for training 

the ANN during SM-based neuromodeling. Since the same kind of scaling is being 

applied at the input and at the output of the ANN, as stated in (2-17) and (2-24), then xc ≈ 

xf  implies that yi ≈ vi  for i = 1,2,…,n in the region of interest of the physical parameters 

fx .  To decouple the hidden neurons we can choose the initial hidden bias and hidden 
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weighting factors as  
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where D is an n by n diagonal matrix with elements h
iiw , hence 
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To decouple the output neurons we can define the output weighting factors as 
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so that  
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2.5.1 Sigmoid Activation Function 

If a sigmoid or logistic function is used, then the response of kth hidden neuron is 

given by (see Haykin, 1999) 
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which is approximated by using 
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Since 11 ≤≤− iv  due to the input scaling, if we take 1.0=h
iiw  for ni ,,2,1 "=  

in (2-29) then (2-30) can be approximated using (2-31) by   
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It is seen that by taking 

40=o
iiw   and  20−=o

ib   for  ni ,,2,1 "=  
 

(2-33)

we achieve the desired unit neuromapping.  Therefore, a starting point for the internal 

parameter of the ANN when sigmoid activation functions are used is given by (2-26) with 

1.0=h
iiw , (2-28) and (2-33). 

2.5.2 Hyperbolic Tangent Activation Function 

If a hyperbolic tangent is used, the response of the kth hidden neuron is 
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A linear approximation to (2-34) can be obtained from its Taylor series 

expansion 
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Since 11 ≤≤− iv  due to the input scaling, if we take 1.0=h
iiw  for ni ,,2,1 "=  

in (2-29) then (2-34) can be approximated using (2-35) by 
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It is seen that by taking 

10=o
iiw   and  0=o

ib  for  ni ,,2,1 "=  
 

(2-37)

we achieve the desired unit neuromapping.  Therefore, a starting point for the internal 



Chapter 2  SPACE MAPPING BASED NEUROMODELING 29 
 

parameters of the ANN when hyperbolic tangent activation functions are used is given by 

(2-26) with 1.0=h
iiw , (2-28) and (2-37). 

In the examples described below, we considered sigmoid functions as well as 

hyperbolic tangent functions to implement the nonlinear activation functions for the 

neurons in the hidden layer.  SM based neuromodels using 3-layer perceptrons have been 

realized in a variety of ways by Bandler, Ismail, Rayas-Sánchez and Zhang (1999a-c) as 

well as by Bandler, Rayas-Sánchez and Zhang (1999a-b). 

2.6 CASE STUDIES 

2.6.1 Microstrip Right Angle Bend 

Consider a microstrip right angle bend, as illustrated in Fig. 2.13, with the 

following input parameters: conductor width W, substrate height H, substrate dielectric 

constant εr, and operating frequency ω.  Three neuromodels exploiting SM technology 

are developed for the region of interest shown in Table 2.1. 

 

εr

W

W

H

 
Fig. 2.13 Microstrip right angle bend. 
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TABLE 2.1 
REGION OF INTEREST FOR THE 

MICROSTRIP RIGHT ANGLE BEND 
  

Parameter Minimum value Maximum value 

W 20 mil 30 mil 
H 8 mil 16 mil 
εr 8 10 
ω 1 GHz 41 GHz 

 
 
 

The model proposed by Gupta, Garg and Bahl (1979), consisting of a lumped LC 

circuit whose parameter values are given by analytical functions of the physical quantities 

W, H and εr is taken as the “coarse” model and implemented in OSA90/hope (1997).  

Sonnet’s em (1997) is used as the fine model.  To parameterize the structure, the 

Geometry Capture technique proposed by Bandler, Biernacki and Chen (1996) available 

in Empipe (1997) is utilized. 

Fig. 2.14 shows typical responses of the coarse and fine models before any 

neuromodeling, using a frequency step of 2 GHz (Fp = 21).  The coarse and fine models 

are compared in Fig. 2.15 using 50 random test base-points with uniform statistical 

distribution within the region of interest (1050 test samples).  Gupta’s model, in this 

region of physical parameters, yields acceptable results for frequencies less than 10 GHz. 

With a star set for the learning base points (n = 3, Bp = 7), 147 learning samples (l 

= 147) are used for three SM based neuromodels, and the corresponding ANNs were 

implemented and trained within OSA90/hope.  Huber optimization was employed as 

the training algorithm, exploiting its robust characteristics for data fitting as shown by 

Bandler, Chen, Biernacki, Gao, Madsen and Yu (1993). 

Fig. 2.16 shows the results for the SMN model implemented with a 3-layer 
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perceptron with 3 input, 6 hidden and 3 output neurons (3LP:3-6-3).  A FDSMN model is 

developed using a 3LP:4-7-3, and the improved results are shown in Fig. 2.17. 
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Fig. 2.14 Typical responses of the right angle bend using em (о) and Gupta’s model (•) 
before any neuromodeling: (a) |S11| ,  (b) |S21|. 
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In Fig. 2.18 the results for the FSMN model with a 3LP:4-8-4 are shown, which 

are even better (as expected).  To implement the FSMN approach, an OSA90 child 
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(b) 

Fig. 2.15 Comparison between em and Gupta model of a right angle bend: (a) error in 
|S11| with respect to em, (b) error in |S21| with respect to em. 
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program is employed to simulate the coarse model with a different frequency variable 

using Datapipe. 
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Fig. 2.16 Comparison between em and SMN model of a right angle bend: (a) error in 
|S11| with respect to em, (b) error in |S21| with respect to em. 
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Fig. 2.17 Comparison between em and FDSMN model of a right angle bend: (a) error 
in |S11| with respect to em, (b) error in |S21| with respect to em. 
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It is seen in Fig. 2.18 that the FSMN model yields excellent results for the whole 

frequency range of interest, overcoming the frequency limitations of the empirical model 
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Fig. 2.18 Comparison between em and FSMN model of a right angle bend: (a) error in 
|S11| with respect to em, (b) error in |S21| with respect to em. 
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by a factor of four. 

To compare these results with those from a classical neuromodeling approach, an 

ANN was developed using NeuroModeler (1998).  Training the ANN with the same 

147 learning samples, the best results were obtained for a 3LP:4-15-4 trained with the 

conjugate gradient and quasi-Newton methods.  Due to the small number of learning 

samples, this approach did not provide good generalization capabilities, as illustrated in 

Fig. 2.19.  To produce similar results to those in Fig. 2.18 using the same ANN 

complexity, the learning samples have to increase from 147 to 315. 

Fig. 2.20 summarizes the different neuromodeling approaches applied to this case 

study. 

2.6.2 HTS Quarter-Wave Microstrip Filter 

Fig. 2.21 illustrates the physical structure of a high-temperature superconducting 

(HTS) quarter-wave parallel coupled-line microstrip filter, to be modeled in the region of 

interest shown in Table 2.2.  L1, L2 and L3 are the lengths of the parallel coupled-line 

sections and S1, S2 and S3 are the gaps between the sections.  The width W is the same for 

all the sections as well as for the input and output microstrip lines, of length L0.  A 

lanthanum aluminate substrate with thickness H and dielectric constant εr is used.  The 

metalization is considered lossless.  Two space mapping based neuromodels are 

developed in the region of interest defined by Table 2.2, taking as design parameters xf = 

[L1 L2 L3 S1 S2 S3] T. 

It has been already shown in the work by Bandler, Biernacki, Chen, Getsinger, 

Grobelny, Moskowitz and Talisa (1995) that the responses of this narrow bandwidth filter 
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are very sensitive to dimensional changes.   

Sonnet’s em (1997) driven by Empipe (1997) was employed as the fine 
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Fig. 2.19 Comparison between em and classical neuromodel of a right angle bend: (a) 
error in |S11| with respect to em, (b) error in |S21| with respect to em. 
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model, using a high-resolution grid with a 1mil×1mil cell size. 

Sections of OSA90/hope built-in linear elements MSL (microstrip line) and 

MSCL (two-conductor symmetrical coupled microstrip lines) connected by circuit theory 

over the same MSUB (microstrip substrate definition) are taken as the “coarse” model. 

Typical responses of the coarse and fine models before any neuromodeling are 

shown in Fig. 2.22, using a frequency step of 0.02 GHz (Fp = 14).  About 10 hrs of CPU 

simulation time was needed for a single frequency sweep on an HP C200-RISC 

workstation.  Following a multidimensional star set (n = 6), 13 learning base points are 

used (l = 182).  To evaluate the generalization performance, 7 testing base points not seen 

in the learning set are used. 
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(c)                                                       (d) 

Fig. 2.20 Different neuromodeling approaches for the right angle bend: (a) SMN, (b) 
FDSMN, (c) FSMN, and (d) classical neuromodeling. 
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TABLE 2.2 

REGION OF INTEREST FOR THE HTS FILTER 
 

Parameter Minimum value Maximum value 

W 7 mil 7 mil 
H 20 mil 20 mil 
εr 23.425 23.425 

Loss tang 3×10−5 3×10−5 
L0 50 mil 50 mil 
L1 175 mil 185 mil 
L2 190 mil 210 mil 
L3 175 mil 185 mil 
S1 18 mil 22 mil 
S2 75 mil 85 mil 
S3 70 mil 90 mil 
ω 3.901 GHz 4.161 GHz 

εr

L2

L1L0

L3

L2

L1

L0

S2 S1

S1 S2

S3

HW

 
Fig. 2.21 HTS quarter-wave parallel coupled-line microstrip filter. 
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The coarse and fine models responses before any neuromodeling are compared in 

Fig. 2.23, at both the learning and the testing sets, showing very large errors in the 

empirical model with respect em due to the shifting in its frequency response, as seen 

in Fig. 2.22. 

To explore the effects of simulating the coarse model at a mapped frequency, a 

FMN technique (see Fig. 2.9) is implemented with a 3LP:7-5-1 trained with Huber 
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Fig. 2.22 Typical responses of the HTS filter using em (•) and OSA90/hope model 
(−) before any neuromodeling at three learning and three testing points. 
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optimization.  As shown in Fig. 2.24, the FMN approach yields good frequency 

alignment between both responses, although a significant error in the amplitudes remains. 
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(a)                                                                           (b) 

Fig. 2.23 Coarse model error w.r.t. em before any neuromodeling: (a) in the learning 
set, (b) in the testing set. 
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Fig. 2.24 Typical responses of the HTS filter using em (•) and FMN model (−) at the 

same three learning and three testing points as in Fig. 2.22. 
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The complete training and generalization errors for the FMN model are shown in 

Fig. 2.25.  Comparing Fig. 2.23 with Fig. 2.25 it is seen that a significant reduction in the 

error is achieved by mapping only the frequency. 

Excellent results are obtained for the FPSMN modeling approach (see Fig. 2.10).  

In this case we mapped only L1 and S1, giving the rest of the design paramaters to the 

coarse model without any transformation, i.e., we take x•
c = [L1c S1c] 

T and x•
f = [L2 L3 S2 

S3] 

T .  Optimal generalization performance was achieved with a 3LP:7-7-3, trained with 

Huber optimization. 

As illustrated in Fig. 2.26, where the same learning and testing points used in Fig. 

2.22 and Fig. 2.24 were chosen, an outstanding agreement between the fine model and 

the FPSMN model is achieved.  The complete learning and generalization performance 

for the FPSMN is shown in Fig. 2.27. 

As a final test, both the FPSMN model and the fine model are simulated at three 

different base points using a very fine frequency sweep, with a frequency step of 

0.005GHz.  Remarkable matching is obtained, as illustrated in Fig. 2.28. 
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(a) (b) 

Fig. 2.25 FMN model error w.r.t. em:  (a) in the learning set, (b) in the testing set. 
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Fig. 2.26 Typical responses of the HTS filter using em (•) and FPSMN model (−) at 

the same three learning and three testing points as in Fig. 2.22. 
 
 
 

3.901 3.966 4.031 4.096 4.161
frequency (GHz)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Er
ro

r i
n 

|S
21

|

3.901 3.966 4.031 4.096 4.161
frequency (GHz)

0

0.05

0.1

0.15

Er
ro

r i
n 

|S
21

|

 
(a)                                     (b) 

Fig. 2.27 FPSMN model error w.r.t. em:  (a) in the learning set, (b) in the testing set. 
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2.7 RELATIONSHIP BETWEEN SM BASED 
NEUROMODELING AND GSM MODELING 

A Generalized Space Mapping (GSM) approach to device modeling was 

developed by Bandler, Georgieva, Ismail, Rayas-Sánchez and Zhang (1999), in which a 

comprehensive tableau for a linear mapping applicable for both the design parameters as 
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Fig. 2.28 Comparison between the HTS filter response using em (•) and FPSMN 

model (−) at three base points using a fine frequency sweep. 
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well as the frequency variable is formulated.  GSM modeling is closely related to the SM-

based neuromodeling. 

As we showed in the previous sections of this chapter, our SM based 

neuromodeling approach is capable of establishing a nonlinear mapping for the design 

parameters only (SMN modeling), the design parameters with frequency dependence 

(FDSMN), the frequency only (FMN), or the design parameters and the frequency 

simultaneously (FSMN and FPSMN). 

Due to the nonlinear nature of the neuromapping, the SM based neuromodeling 

techniques do not require the frequency range to be segmented in case of severe 

misalignment between the coarse and fine frequency responses, in contrast with the 

piecewise linear approach usually needed in these cases when the GSM techniques are 

applied. 

Furthermore, in the FMN, FSMN and FPSMN techniques, a coupling between 

the transformed frequency ωc and the design parameters xf is in principle assumed, which 

represents the most general case in the GSM approach. 

The nonlinear mapping used by the SM-based neuromodeling techniques allows 

us to cover a much larger region in the input design parameter space than that one 

typically covered by GSM techniques.  When the GSM techniques are used, a multiple 

space mapping approach is usually needed if the region of interest is large or if the model 

responses are very sensitive to the design parameters in the region of interest. 

The Space Mapping Super Model (SMSM) concept, the Frequency Space 

Mapping Super Model (SMSM) concept and the Multiple Space Mapping (MSM) 

concept are variations of the GSM approach to device modeling.  These techniques are 

described in the work by Bandler, Georgieva, Ismail, Rayas-Sánchez and Zhang (1999), 
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as well as in the work by Bandler, Ismail and Rayas-Sánchez (2000). 

2.8 CONCLUDING REMARKS 

We have described in this chapter novel applications of Space Mapping 

technology to the modeling of microwave circuits using artificial neural networks.  Five 

powerful techniques to generate SM based neuromodels have been described and 

illustrated: Space Mapped Neuromodeling (SMN), Frequency-Dependent Space Mapped 

Neuromodeling (FDSMN), Frequency Space Mapped Neuromodeling (FSMN), 

Frequency Mapped Neuromodeling (FMN) and Frequency Partial-Space Mapped 

Neuromodeling (FPSMN). 

The SM-based neuromodeling techniques exploit the vast set of empirical models 

already available, decrease the number of fine model evaluations needed for training, 

improve generalization performance and reduce the complexity of the ANN topology 

w.r.t. the classical neuromodeling approach. 

Frequency-sensitive neuromapping is demonstrated to be a clever strategy to 

expand the usefulness of microwave empirical models that were developed using quasi-

static analysis. 

We have also demonstrated FMN as an effective technique to align severely 

frequency-shifted responses. 

By establishing a partial mapping for the physical parameters, a more efficient 

use of the implicit knowledge in the coarse model is achieved and the corresponding 

neuromapping becomes simpler and easier to train. 

As an original alternative to the classical backpropagation algorithm, Huber 
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optimization is employed to efficiently train the neural network that implements the 

mapping, exploiting its robust characteristics for data fitting. 
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Chapter 3 

NEURAL SPACE MAPPING (NSM) 
OPTIMIZATION 

3.1 INTRODUCTION 

As we showed in Chapter 2, Artificial Neural Networks (ANNs) are suitable 

models for microwave structures.  Neuromodels are computationally much more efficient 

than EM or physical models and can be more accurate than empirical, physics-based 

models.  Once they are trained with reliable learning data, obtained by either EM 

simulation or by measurement, the neuromodels can be used for efficient and accurate 

optimization within the region of training.  This has been the conventional approach to 

optimization of microwave structures using ANNs; see for example the work of Watson 

and Gupta (1997). 

The principal drawback of this ANN optimization approach is the cost of 

generating sufficient learning samples, since the simulations/measurements must be 

performed for many combinations of different values of geometrical, material, process 

and input signal parameters over a large region.  Additionally, it is well known that the 

extrapolation ability of neuromodels is poor, making unreliable any solution predicted 

outside the training region.  Introducing knowledge, as in the approach of Watson, 

Creech and Gupta (1999), can alleviate these limitations. 

A powerful new method for optimization of microwave circuits based on Space 
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Mapping (SM) technology and Artificial Neural Networks (ANN) is described in this 

Chapter.  An innovative strategy is proposed to exploit the SM-based neuromodeling 

techniques in an efficient Neural Space Mapping  (NSM) optimization algorithm.  SM-

based neuromodeling techniques are described in the previous chapter and were 

developed by Bandler, Ismail, Rayas-Sánchez and Zhang (1999).  In this chapter, we 

change our focus of interest, from modeling to design by optimization. 

NSM optimization requires a reduced set of upfront fine model simulations or 

learning base points.  A coarse or empirical model is used as source of knowledge that 

reduces the required amount of learning data and improves the generalization and 

extrapolation performance of the SM-based neuromodel.  The sensitivity information of 

the coarse model is also employed as a means to select the initial learning base points. 

A novel procedure that does not require troublesome parameter extraction to 

predict the next point is described. 

As before, Huber optimization is used to train the SM-based neuromodels at each 

iteration. 

In order to reduce the amount of fine model simulations, the SM-based 

neuromodels are developed without using testing points: their generalization performance 

is controlled by gradually increasing their complexity starting with a 3-layer perceptron 

with 0 hidden neurons, i.e., starting with a linear mapping. 

NSM optimization is illustrated by the optimization of a high-temperature 

superconducting (HTS) quarter-wave parallel coupled-line microstrip filter and a 

bandstop microstrip filter with quarter-wave resonant open stubs.  These results are 

compared in Chapter 5 with those obtained using a more advanced ANN-based space 

mapping optimization algorithm. 
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3.2 A BRIEF REVIEW ON OPTIMIZATION OF MICRO-
WAVE CIRCUITS USING NEURAL NETWORKS 

In Section 2.3 we made a review of the main neural network modeling techniques 

employed in the microwave arena.  Burrascano and Mongiardo (1999) developed a more 

detailed review on that subject.  It is clear that neural networks have been extensively 

used for modeling in many different variations. 

In contrast, the use of neural networks for design by optimization is at an earlier 

stage.  A few variations in the use of neural networks for optimization of microwave 

circuits have been reported. 

The most widely used technique for neural optimization of microwave circuits 

consists of generating a neuromodel of the microwave circuit within a certain training 

region of the design parameters, and then applying conventional optimization to the 

neuromodel to find the optimal solution that yields the desired response.  A neuromodel 

can be developed for the whole microwave circuit to be optimized, or in a decomposed 

fashion, where small neuromodels are developed for each individual component in the 

circuit, which are later connected by circuit theory.  Full wave EM simulations are 

typically employed to generate the training data.  The generalization ability of the 

neuromodel(s) is controlled during the training process by using validation data and 

testing data, also obtained from EM simulations.  Examples of this neural optimization 

approach can be found in the work by Horng, Wang and Alexopoulos (1993), Zaabab, 

Zhang and Nakhla (1995), Veluswami, Nakhla and Zhang (1997), Watson and Gupta 

(1997), and Burrascano, Dionigi, Fancelli and Mongiardo (1998).  

As stated before, the previous neural optimization approach has two main 

disadvantages: the time required to generate sufficient training, validation and testing 
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samples, and the unreliability of the “optimal” solution when it lies outside the training 

region. 

One way to decrease the amount of up-front EM simulations is shown in the 

work by Burrascano and Mongiardo (1999), where the neuromodel to be optimized 

consists of several neural networks, each of them specialized for a cluster of responses 

that were previously identified. 

Both limitations of the conventional neural optimization approach can be 

alleviated by incorporating prior knowledge into the neural network structure.  In the 

work by Watson, Creech and Gupta (1999), an EM-ANN approach (see Section 2.3) was 

used to optimize a CPW patch antenna.  Similarly, an end-coupled band-pass filter in a 2-

layer configuration was designed by Cho and Gupta (1999) following also an EM-ANN 

approach. 

A fourth variation for the design of microwave circuits with ANNs is by using 

synthesis neural networks.  A synthesis neural network is trained to learn the mapping 

from the responses to the design parameters of the microwave circuit.  In this sense, a 

conventional neuromodel becomes an analysis neural network.  The problem of training a 

synthesis neural network is known as the inverse modeling problem, since the input and 

output variables are interchanged. 

The analysis problem is characterized by a single-value mapping: given a vector 

of design parameters we have only one possible vector of responses.  However, for 

inverse problems, the mapping can often be multivalued: a given vector of responses can 

be generated by several different vectors of design parameters.  This leads the synthesis 

neural network to make poor generalizations.  Another complication of the inverse 

modeling problem is the coverage of the input space by the training data, since the full 
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characterization of the input space (microwave circuit responses) is usually not available. 

Watson, Cho and Gupta (1999) successfully developed a dedicated algorithm for 

the design of multilayer asymmetric coupled transmission structures using a combination 

of analysis and synthesis neural networks.  In this work, the input space of the synthesis 

neural network is not the set of S parameters, but a set of LC parameters that are later 

translated into the conventional responses. 

The neural optimization technique described in this chapter makes use of the 

knowledge available in equivalent circuit models following a space mapping approach. 

3.3 THE SPACE MAPPING CONCEPT WITH FREQUENCY 
INCLUDED 

As indicated in Section 2.2, Space Mapping (SM) is a powerful concept for 

circuit design and optimization that combines the computational efficiency of “coarse” 

models with the accuracy of “fine” models.  The SM concept can be extended to consider 

not only a mapping between the physical design parameters, but also between other 

independent variables.  Frequency Space Mapping (FSM) was originally proposed by 

Bandler, Biernacki, Chen, Hemmers and Madsen (1995) as an strategy to improve the 

parameter extraction process when the shapes of two responses are similar but severely 

misaligned.  FSM was originally employed to align those kinds of responses along the 

frequency axis first. 

In the Space Mapping technique with frequency included, the operating 

frequency ω is also considered in the mapping function.  This allows us to simulate the 

coarse model at a different frequency ωc.  

Let the vectors xc and xf represent the design parameters of the coarse and fine 
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models, respectively, and Rc(xc ,ωc) and Rf (xf ,ω) the corresponding model responses (for 

example, Rc and Rf might contain the real and imaginary parts of S21).  As before,  Rc is 

much faster to calculate but less accurate than Rf . 

The aim of Space Mapping optimization, including frequency, is to find an 

appropriate mapping P from the fine model input space to the coarse model input space 

),( ω
ω f

c

c xP
x

=







 (3-1) 

such that 

),(),( ωω ffccc xRxR ≈  (3-2) 

Once a mapping P valid in the region of interest for the design parameters xf  and 

operating frequency ω is found, the coarse model can be used for fast and accurate 

simulations in that region. 

3.4 NSM OPTIMIZATION: AN OVERVIEW 

Fig. 3.1 shows the flow diagram of NSM optimization.  Here we explain the 

overall operation of NSM optimization; a detailed description of the main blocks is 

presented in the following sections. 

We start by finding the optimal coarse model solution xc
* that yields the desired 

response by applying conventional optimization to the coarse model.  We then select 2n 

additional points following an n-dimensional star set, as in the work by Biernacki, 

Bandler, Song and Zhang (1989), centered at xc
*, as illustrated in Fig. 3.2, where n is the 

number of design parameters (xc, xf ∈ ℜn). 
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The amount of deviation from xc
* for each design parameter is determined 

according to the coarse model sensitivities.  The larger the sensitivity of the coarse model 

Start

Calculate the fine response
Rf (xf )

SM BASED NEUROMODELING:
Find the simplest neuromapping P

such that

Rf (xf 
(l) , ωj) ≈  Rc(P (xf

(l) , ωj))

l = 1,..., Bp and j = 1,..., Fp

COARSE OPTIMIZATION: find the
optimal coarse model solution xc

* that
generates the desired response R*

Rc(xc
* )  =  R*

Form a learning set with Bp = 2n+1 base
points, by selecting 2n additional points
around xc

*, following a star distribution
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Choose the coarse optimal solution as
a starting point for the fine model

xf  =  xc
*
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Fig. 3.1 Neural Space Mapping (NSM) Optimization. 
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response w.r.t. a certain parameter, the smaller the percentage of variation of that 

parameter.  We assume that the coarse model sensitivities are similar to those of the fine 

model, which is usually the case in many practical problems since the coarse model 

represents the same physical system as the fine model. 

The fine model response Rf at the optimal coarse model solution xc
* is then 

calculated.  If Rf is approximately equal to the desired response, the algorithm ends, 

otherwise we develop an SM-based neuromodel over the 2n+1 fine model points initially 

available. 

Once an SM-based neuromodel with small learning errors is available, we use it 

as an improved coarse model, optimizing its parameters to generate the desired response.  

The solution to this optimization problem becomes the next point in the fine model 

parameter space, and it is included in the learning set. 

We calculate the fine model response at the new point, and compare it with the 

desired response. If it is still different, we re-train the SM-based neuromodel over the 

xf 1

xf 2

xf 3

xc
*

 
Fig. 3.2 Three-dimensional star set for the initial base points during NSM optimization. 
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extended set of learning samples and the algorithm continues, otherwise, the algorithm 

terminates. 

3.5 COARSE OPTIMIZATION 

During the coarse optimization phase of NSM optimization (see Fig. 3.1), we 

want to find the optimal coarse model solution xc
* that generates the desired response 

over the frequency range of interest.  The vector of coarse model responses Rc might 

contain r different responses of the circuit,  

TT
c

r
c

T
cccc ])()([)( 1 xRxRxR …=  (3-3) 

where each individual response has been sampled at Fp frequency points,  

T
Fc

k
cc

k
cc

k
c p

RR ]),(),([)( 1 ωω xxxR …= ,  rk ,,1…=  (3-4) 

The desired response R* is expressed in terms of specifications.  Following 

Bandler and Chen (1988), the problem of circuit design using the coarse model can be 

formulated as 

))((minarg*
cc

c
c U xRxx =  (3-5) 

where U is a suitable objective function.  Typically, U is a minimax objective function 

expressed in terms of upper and lower specifications for each response and frequency 

sample.  Bandler and Chen (1988) formulated a rich collection of objective functions, for 

different design constraints. 

3.6 REFINING THE SM-BASED NEUROMODEL DURING 
NSM OPTIMIZATION 

At the ith iteration, we want to find the simplest neuromapping P(i) such that the 
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coarse model using that mapping approximates the fine model at all the accumulated 

learning base points.  We are interested in the simplest neural network in order to avoid 

poor generalization performance, since no testing samples are being used. 

This is realized by solving the optimization problem 

TT
s ][minarg* "" eww =  (3-6) 
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where 2n + i is the number of training base points for the input design parameters and Fp 

is the number of frequency points per frequency sweep.  It is seen that the total number of 

learning samples at the ith iteration is (2n+i)Fp, and the length of the total error vector in 

(3-6) is (2n+i)rFp. 

(3-8) is the input-output relationship of the ANN that implements the mapping at 

the ith iteration.  Vector w contains the internal parameters (weights, bias, etc.) of the 

ANN.  The paradigm chosen to implement P is a 3-layer perceptron (3LP). 

All the SM-based neuromodeling techniques proposed by Bandler, Ismail, 

Rayas-Sánchez and Zhang (1999), described in the previous chapter, can be exploited to 

efficiently solve (3-6). 
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In the Space Mapped (SM) neuromodeling approach only the design parameters 

are mapped, and the coarse model is simulated at the same frequency as the fine model.  

The corresponding neuromapping is illustrated in Fig. 3.3, which is expressed as 
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In the Frequency-Dependent Space Mapped (FDSM) neuromodeling approach, 

both coarse and fine models are simulated at the same frequency, but the mapping from 

the fine to the coarse parameter space is dependent on the frequency.  The corresponding 

neuromapping is illustrated in Fig. 3.4, and it is expressed as 
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Fig. 3.3 Space Mapped neuromapping. 
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Fig. 3.4 Frequency-Dependent Space Mapped neuromapping. 
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The Frequency Space Mapped (FSM) neuromodeling technique establishes a 

mapping not only for the design parameters but also for the frequency variable, such that 

the coarse model is simulated at a different frequency to match the fine model response.  

The FSM neuromapping is illustrated in Fig. 3.5, and it is expressed as 
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For those cases where the shapes of the fine and coarse model responses are very 

similar but shifted in frequency, the Frequency Mapped (FM) neuromodeling technique 

simulates the coarse model with the same physical parameters used by the fine model, but 

at a different frequency to align both responses.  In this manner, we can compensate the 

coarse model when it consists of a circuit-theoretic approximation based on quasi-static 

assumptions.  Fig. 3.6 illustrates the FM neuromapping, which is expressed as 
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Fig. 3.5 Frequency Space Mapped neuromapping. 
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Finally, the Frequency Partial-Space Mapped (FPSM) neuromodeling technique 

maps only some of the design parameters and the frequency, making an even more 

efficient use of the implicit knowledge in the coarse model.  The FPSM neuromapping is 

represented in Fig. 3.7, and it is mathematically expressed as 
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Note that the “design” parameters of the coarse model do not change with 

frequency only in the SMN and FM neuromappings. 
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Fig. 3.6 Frequency Mapped neuromapping. 
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Fig. 3.7 Frequency Partial-Space Mapped neuromapping. 
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The starting point for the first training process is a unit mapping, i.e., P (0) (xf
(l), 

ωj, wu) = [xf
(l)T ωj]T, for j = 1,…, Fp and l = 1,…, 2n+1, where wu contains the internal 

parameters of the ANN that give a unit mapping.  The SM-based neuromodel is trained in 

the next iterations using the previous mapping as the starting point. 

The complexity of the ANN (the number of hidden neurons and the SM-based 

neuromodeling technique) is gradually increased according to the learning error εL, 

starting with a linear mapping (3-layer perceptron with 0 hidden neurons).  In other 

words, we use the simplest ANN that yields an acceptable learning error εL, defined as 

TT
sL ][ "" e=ε  (3-17) 

where es is obtained from (3-7) using the current optimal values for the ANN internal 

parameters w*. 

In our implementation, the neuromapping for the first iteration is approximated 

using the FMN technique, so that any possible severe misalignment in frequency between 

the coarse and the fine model responses is first alleviated.  Then, the physical parameters 

are gradually mapped, following a FPSM technique. 

Linear Adaptive Frequency-Space Mapping (LAFSM) is a special case of NSM 

optimization, corresponding to the situation when the number of hidden neurons of the 

ANN is zero at all iterations. 

When solving (3-6) at each NSM iteration, the number of unknowns, i.e., the 

length of w, is established by the kind of neuromapping selected (SM, FDSM, FSM, FM 

or FPSM) and the number of hidden neurons used.  On the other hand, the number of 

equations is fixed and given by (2n+i)rFp.  At each NSM iteration we verify that the 

length of w is not larger than (2n+i)rFp to avoid solving an under-determined system 
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when training the SM-based neuromodel. 

3.7 SM-BASED NEUROMODEL OPTIMIZATION 

At the ith iteration of NSM optimization, we use the simplest SM-based 

neuromodel with small learning error over the 2n+i accumulated points as an improved 

coarse model, optimizing its design parameters to generate the desired response.  The 

solution to the direct optimization of this mapped, enhanced, coarse model gives us the 

next iterate. 

We denote the SM-based neuromodel response as RSMBN, defined as 
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The solution to the following optimization problem becomes the next iterate: 
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with U defined as in (4-5).  If an SMN neuromapping is used to implement )(iP  (see Fig. 

3.3), the next iterate can be obtained in a simpler manner by solving 
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3.8 NSM ALGORITHM 

The proposed algorithm for implementing NSM is as follows 

Step 0.  Find *
cx  by solving (3-5). 
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cx . 

Step 2.  Initialize 1=i , *)2(
c

in
f xx =+ . 

Step 3.  Stop if Rjccj
in

ff εωω ≤−+ ),(),( *)2( xRxR , pFj ,,1…= . 

Step 4.  Initialize )1()( −= ii PP , where  












=

j

l
f

uj
l

f ω
ω

)(
)()0( ),,(

x
wxP  , pFj ,,1…= ;  inl += 2,,1… . 

Step 5.  Find w* by solving (3-6). 

Step 6.  Calculate εL using (3-17). 

Step 7.  If minεε >L , increase the complexity of )(iP  and go to Step 5. 

Step 8.  If an SM neuromapping is used to implement )(iP , solve (3-23),  

otherwise solve (3-22). 

Step 9.  Set 1+= ii ; go to Step 3. 

3.9 EXAMPLES 

3.9.1 HTS Microstrip Filter 

We apply NSM optimization to a high-temperature superconducting (HTS) 

quarter-wave parallel coupled-line microstrip filter (Bandler, Biernacki, Chen, Getsinger, 
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Grobelny, Moskowitz and Talisa, 1995), whose physical structure is illustrated in Fig. 

2.21.  L1, L2 and L3 are the lengths of the parallel coupled-line sections and S1, S2 and S3 

are the separations between the sections.  The width W is the same for all the microstrip 

sections as well as for the input and output microstrip lines, which have a length L0.  A 

lanthanum aluminate substrate with thickness H and dielectric constant εr is used. 

The specifications are |S21| ≥ 0.95 in the passband and |S21| ≤ 0.05 in the stopband, 

where the stopband includes frequencies below 3.967 GHz and above 4.099 GHz, and the 

passband lies in the range [4.008GHz, 4.058GHz].  The design parameters are xf = [L1 L2 

L3 S1 S2 S3] T.  We take L0 = 50 mil, H = 20 mil, W = 7 mil, εr = 23.425, loss tangent = 

3×10−5; the metalization is considered lossless. 

Sonnet’s em (1997) driven by Empipe (1997) is employed as the fine model, 

using a high-resolution grid with a 1mil×1mil cell size, with interpolation disabled. 

The conceptual schematic of the coarse model used for the HTS filter is 

illustrated in Fig. 3.8.  OSA90/hope (1997) built-in linear elements MSL (microstrip 

line), MSCL (two-conductor symmetrical coupled microstrip lines) and OPEN (open 

circuit) connected by circuit theory over the same MSUB (microstrip substrate definition) 

 
Fig. 3.8 Representation of the coarse model for the HTS microstrip filter. 
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are taken as the “coarse” model. 

The following optimal coarse model solution is found: xc
* = [188.33  197.98  

188.58 21.97  99.12  111.67] T (mils), as in the work by Bakr, Bandler, Biernacki, Chen, 

and Madsen (1998).  The coarse and fine model responses at the optimal coarse solution 

are shown in Fig. 3.9. 

The initial 2n+1 points are chosen by performing sensitivity analysis on the 

coarse model: a 3% deviation from xc
* for L1, L2, and L3 is used, while a 20% is used for 

S1, S2, and S3.  The corresponding fine and coarse model responses at these 13 star-set 

learning points are shown in Fig. 3.10. 

Fig. 3.11 shows the evolution of the learning errors at the 2n+1 points as we 

increase the complexity of the neuromapping during the first iteration.  It is seen that 

mapping the frequency has a dramatic effect on the alignment of the responses, and a 
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Fig. 3.9 Coarse and fine model responses at the optimal coarse solution: OSA90/hope 

(−) and em (•). 
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simple FPSM neuromapping is needed.  The final mapping is implemented with a 3-layer 

perceptron with 7 inputs (6 design parameters and the frequency), 5 hidden neurons, and 

3 output neurons (ω, L1, and S1). 
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(b) 

Fig. 3.10 Coarse and fine model responses at the initial 2n+1 base points around the 
optimal coarse solution: (a) OSA90/hope, (b) em. 



68 Chapter 3  NEURAL SPACE MAPPING (NSM) OPTIMIZATION 

As indicated in Step 8 of the NSM algorithm, we calculate the next point by 

optimizing the coarse model with the mapping found.  The next point predicted is xf 
(14) = 

[185.37  195.01  184.24  21.04  86.36  91.39] T (mils), which matches the desired 

response with excellent accuracy, as seen in Fig. 3.12. 

As a final test, both the FPSMN model and the fine model are simulated at the 

NSM solution xf 
(14) using a very fine frequency sweep, with a frequency step of 

0.005GHz.  The NSM solution satisfies the specifications, as shown in Fig. 3.13.  A 

detailed illustration of the passband using an even finer frequency sweep is shown in Fig. 

3.14.  The HTS filter is optimized in only one NSM iteration. 
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Fig. 3.11 Learning errors at initial base points: (a) at the starting point, (b) mapping ω with a 
3LP:7-3-1, (c) mapping ω and L1 with a 3LP:7-4-2, and (d) mapping ω, L1 and S1 
with a 3LP:7-5-3. 
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Fig. 3.12 em (•) and FPSM 7-5-3 (−) model responses at the next point predicted after 
the first NSM iteration: (a) |S21| in dB, (b) |S21|. 
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(b) 

Fig. 3.13 em (•) and FPSMN 7-5-3 (−) model responses, using a fine frequency sweep, 
at the next point predicted after the first NSM iteration: (a) |S21| in dB, (b) |S21|. 
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3.9.2 Bandstop Microstrip Filter With Open Stubs 

NSM optimization is applied to a bandstop microstrip filter with quarter-wave 

resonant open stubs, illustrated in Fig. 3.15.  L1, L2 are the open stub lengths and W1, W2 

the corresponding widths.  An alumina substrate with thickness H = 25 mil, width W0 = 

25 mil and dielectric constant εr = 9.4 is used for a 50 Ω feeding line. 

The specifications are |S21| ≤ 0.05 in the stopband and |S21| ≥ 0.9 in the passband, 

where the stopband lies between 9.3 GHz and 10.7 GHz, and the passband includes 

frequencies below 8 GHz and above 12 GHz.  The design parameters are xf = [W1 W2 L0 

L1 L2] T. 

Sonnet’s em (1997) driven by Empipe (1997) was employed as the fine 

model, using a high-resolution grid with a 1mil×1mil cell size. 
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Fig. 3.14 em (•) and FPSMN 7-5-3 (−) model responses in the passband, using a fine 

frequency sweep, at the next point predicted after the first NSM iteration. 
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As the coarse model, we use simple transmission lines for modeling each 

microstrip section (see Fig. 3.16) and classical formulas, see, e.g., Pozar (1998), to 

calculate the characteristic impedance and the effective dielectric constant of each 

transmission line.  It is seen that Lc2 = L2 + W0/2, Lc1 = L1 + W0/2, and Lc0 = L0 + W1/2 + 

W2/2.  We use OSA90/hope (1997) built-in transmission line elements TRL. 

The following optimal coarse model solution is found for L0, L1, and L2 of 

quarter-wave lengths at 10 GHz: xc
* = [6.00  9.01  106.45  110.15  108.81] T (mils).  The 

coarse and fine model responses at the optimal coarse solution are shown in Fig. 3.17. 

The initial 2n+1 points are chosen by performing sensitivity analysis on the 

coarse model: a 50% deviation from xc
* for W1, W2, and L0 is used, while a 15% is used 

ε r
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H
L2

W1
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Fig. 3.15 Bandstop microstrip filter with quarter-wave resonant open stubs. 
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for L1, and L2. 

Initially, a simple FM neuromapping (see Fig. 3.6) with 2 hidden neurons 

(3LP:6-2-1, ω) was used to match the responses at the learning base points.  The FM 

L c1L c2L c1

Lc0 Lc0

Z0 Z0

Z 2

Z 1 Z 1

 
Fig. 3.16 Coarse model of the bandstop microstrip filter with open stubs. 
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Fig. 3.17 Coarse and fine model responses at the optimal coarse solution: OSA90/hope 

(−) and em (•). 
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neuromodel and the fine model responses at the optimal coarse solution are shown in Fig. 

3.18. 

Optimizing the FM neuromodel to satisfy the specifications (Step 8 of the NSM 

algorithm), the next iterate is xf 
(12) = [6.54  16.95  91.26  113.30  120.72] T (mils).  The 

coarse and fine model responses at this point are shown in Fig. 3.19. 

We performed a second NSM iteration.  xf 
(12) is included in the learning base 

points.  Now a FPSM neuromapping with 3 hidden neurons is needed to match the 2n+2 

points: only ω and W2 are mapped (3LP:6-3-2, ω, W2).  Fig. 3.20 shows the FPSM 

neuromodel and the fine model responses at xf 
(12).  Optimizing the FPSM neuromodel, 

the next iterate is xf 
(13) = [5.92  13.54  83.34  114.14  124.81] T (mils).  The coarse and 

fine model responses at xf 
(13) are shown in Fig. 3.21. 

As a final test, using a fine frequency sweep, we show in Fig. 3.22 the fine model 

response at xf 
(13) and the optimal coarse response. The bandstop microstrip filter is 

optimized in two NSM iterations. 
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Fig. 3.18 FM (3LP:6-2-1, ω) neuromodel (−) and the fine model (•) responses at the 

optimal coarse solution. 
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Fig. 3.19 Coarse (−) and fine (•) model responses at the next point predicted by the first 

NSM iteration. 
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Fig. 3.20 FPSM (3LP:6-3-2, ω, W2) neuromodel (−) and the fine model (•) responses at 

the point predicted by the first NSM iteration. 
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Fig. 3.21 Coarse (−) and fine model (•) responses at the next point predicted by the 

second NSM iteration. 
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Fig. 3.22 Fine model response (•) at the next point predicted by the second NSM 

iteration and optimal coarse response (−), using a fine frequency sweep. 
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3.10 CONCLUDING REMARKS 

We have described in this chapter an innovative algorithm for EM optimization 

based on Space Mapping technology and Artificial Neural Networks.  Neural Space 

Mapping (NSM) optimization exploits our SM-based neuromodeling techniques, 

described in Chapter 2, to efficiently approximate the mapping from the fine to the coarse 

input space at each iteration. 

NSM does not require parameter extraction to predict the next point.  An initial 

mapping is established by performing upfront fine model analysis at a reduced number of 

base points.  The coarse model sensitivities are exploited to select those base points. 

Huber optimization is used to train simple SM-based neuromodels at each 

iteration.  The SM-based neuromodels are developed without using testing points: their 

generalization performance is controlled by gradually increasing their complexity starting 

with a 3-layer perceptron with 0 hidden neurons. 

A high-temperature superconducting (HTS) quarter-wave parallel coupled-line 

microstrip filter and a bandstop microstrip filter with quarter-wave resonant open stubs 

illustrate our optimization technique. 

NSM optimization was developed by Bakr, Bandler, Ismail, Rayas-Sánchez and 

Zhang (2000a-c).  NSM optimization is compared in Chapter 5 with another SM-based 

neural network optimization algorithm. 

 

 

 

 



78 Chapter 3  NEURAL SPACE MAPPING (NSM) OPTIMIZATION 

 

 

 



79 

Chapter 4 

YIELD EM OPTIMIZATION VIA 
SM-BASED NEUROMODELS 

4.1 INTRODUCTION 

Accurate yield optimization and statistical analysis of microwave components are 

crucial ingredients for manufacturability-driven designs in a time-to-market development 

environment.  Yield optimization requires intensive simulations to cover the entire 

statistic of possible outcomes of a given manufacturing process. 

Electromagnetic (EM) full-wave field solvers are regarded as highly accurate to 

predict the behavior of microwave structures.  With the increasing availability of 

commercial EM simulators, it is very desirable to include them in the statistical analysis 

and yield-driven design of microwave circuits.  Given the high cost in computational 

effort imposed by the EM simulators, creative procedures must be searched to efficiently 

use them for statistical analysis and design. 

Yield-driven EM optimization using multidimensional quadratic models that 

approximate the EM model responses for efficient and accurate evaluations was proposed 

by Bandler, Biernacki, Chen, Grobelny and Ye (1993).  A more integrated CAD 

environment for statistical analysis and yield-driven circuit design was later proposed in 

the work by Bandler, Biernacki, Chen and Grobelny (1994), where the quadratic 

modeling techniques and interpolation techniques (to deal with the discretization of the 
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geometrical parameters of the EM structure) were unified.  

We describe in this chapter the use of space mapping-based neuromodels for 

efficient and accurate EM-based statistical analysis and yield optimization of microwave 

structures.  We mathematically formulate the yield optimization problem using SM-based 

neuromodels.  A general equation to express the relationship between the fine and coarse 

model sensitivities through a nonlinear, frequency-sensitive neuromapping is presented.  

This equation represents a generalization of a lemma found in previous work following a 

different approach.   

We illustrate the use of space mapping based neuromodels for EM statistical 

analysis and yield optimization by a high-temperature superconducting (HTS) quarter-

wave parallel coupled-line microstrip filter. 

4.2 STATISTICAL CIRCUIT ANALYSIS AND DESIGN: 
PROBLEM FORMULATION 

In practice, random variations in the manufacturing process of a microwave 

device may result in a significant percentage of the produced devices not meeting the 

specifications.  When designing, it is essential to account for these inevitable 

uncertainties.  Many recent significant contributions have been made to the statistical 

analysis and design of microwave circuits, see for example the work by Bandler, 

Biernacki, Chen, Grobelny and Ye (1993), Bandler, Biernacki, Chen and Grobelny 

(1994), Carroll and Chang (1996), etc.  An excellent review of different approaches to 

statistical design can be found in the work by Song (1991). 

Let x ∈ ℜn represent the vector of n design parameters of the microwave device 

whose r responses at frequency ω are contained in vector R (x ,ω) ∈ ℜr (for example, R(x 
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,ω) might contain the real and imaginary parts of S11 at 10 GHz for a given physical 

structure).  

The design goals are defined by a vector Su(ω) ∈ ℜr of upper specifications and a 

vector Sl(ω) ∈ ℜr of lower specifications imposed on the responses R(x ,ω) at each 

frequency of interests.  A lower specification on the kth response at frequency ω requires 

Rk(x, ω) ≥ Slk(ω) while an upper specification requires Rk(x, ω) ≤ Suk(ω).  It is possible to 

impose both a lower and an upper specification on a single response. 

Two error vectors eu, el ∈ ℜr can be used to measure the degree to which a 

response satisfies or violates the specifications, 

),()(),( ωωω xRSxe −= ll  

)(),(),( ωωω uu SxRxe −=  

(4-1) 

(4-2) 

Nonnegative weighting factors can be included in (4-1) and (4-2) for scaling purposes.  In 

practice, these two error vectors are sampled at a finite set of frequency points of interest, 

not necessarily overlapping.  The corresponding two sets of vectors can be combined in a 

single error vector 

TT
u

T
u

T
l

T
l ][)( 2121 "" eeeexe =  (4-3) 

whose dimensionality is denoted by M.  Clearly, negative components in e indicate 

satisfaction of the corresponding specifications. 

In the nominal design, we are interested in finding a single vector of design 

parameters x*, called optimal nominal solution, for which the responses R(x*) optimally 

satisfy the design specifications Su and Sl at all frequency points of interest.  Following 

Bandler and Chen (1988), this task can be formulated as a minimax optimization problem 
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)(minarg* xxx U=  

)(max)( xx je
j

U =  

(4-4) 

(4-5) 

where ej(x) is the jth element in the error vector (4-3), with j = 1…M. 

In the statistical approach to circuit design, we take into account that the design 

parameters of the manufactured device outcomes xk are actually spread around the 

nominal point x according to their statistical distributions and tolerances.  These 

parameters can be represented as 

kk ∆xxx += ,   k = 1, 2, …, N (4-6) 

where N is the number of such outcomes.  We associate with each outcome an acceptance 

index Ia defined by 


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xx  (4-7) 

If N is sufficiently large for statistical significance, we can approximate the yield 

Y at the nominal point x by using 

∑
=

≈
N

k

k
aI

N
Y

1
)(1)( xx  (4-8) 

An error vector e(xk) ∈ ℜM is associated to each circuit outcome xk according to 

(4-1)-(4-3).  Following Grobelny (1991), the optimal yield solution xY* can be found by 

solving 

∑
∈

=
Kk

k
k

Y H )(minarg 1
* xxx α  

{ }0)(1 >= kHkK x  

(4-9) 

(4-10) 

where H1(xk) is the generalized l1 function 
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and αk are positive multipliers calculated from 

)(
1
)0(

1
kk H xx ∆

α
+

=  ,  k = 1, 2, …, N (4-13) 

where x(0) is the starting point, for which a good candidate is the optimal nominal solution 

x*.  It is seen that the optimal yield objective function in (4-9) equals the number of failed 

circuits Nfail at the starting point, and provides a continuous approximation to Nfail during 

optimization.  If necessary, yield optimization can be restarted with αk updated with the 

current solution. We use in this work the highly efficient implementation of yield analysis 

and optimization available in OSA90/hope (1997). 

4.3 YIELD ANALYSIS AND OPTIMIZATION USING 
SPACE MAPPING BASED NEUROMODELS 

Bandler, Rayas-Sánchez and Zhang (2001) proposed the use of SM-based 

neuromodels to perform accurate and efficient yield analysis and optimization of 

microwave devices.  The aim is to combine the computational efficiency of coarse 

models (typically equivalent circuit models) with the accuracy of fine models (typically 

EM simulators).  We assume that the SM-based neuromodel is already available, 

obtained either from a modeling process (see Chapter 2) or from an optimization process 

(see Chapter 3). 
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Let the vectors xc, xf ∈ ℜn represent the design parameters of the coarse and fine 

models, respectively.  In general, the operating frequency ω, used by the fine model, can 

be different to that one used by the coarse model, denoted as ωc.  Let Rc(xc,ωc), Rf (xf,ω) 

∈ ℜr represent the coarse and fine model responses at the frequencies ωc and ω, 

respectively.  We denote the corresponding SM-based neuromodel responses at 

frequency ω as RSMBN (xf,ω), given by 

),(),( cccfSMBN ωω xRxR =  

with 
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(4-14) 

 

(4-15) 

where the mapping function P is implemented by a neural network following any of the 5 

neuromapping variations (SM, FDSM, FSM, FM or FPSM) described in Chapters 2 and 

3.  As stated before, we assume that a suitable mapping function P has already been 

found (i.e., a neural network with suitable complexity has already been trained). 

If the SM-based neuromodel is properly developed, 

),(),( ωω fSMBNff xRxR ≈  (4-16) 

for all xf and ω in the training region.  The Jacobian of the fine model responses w.r.t. the 

fine model parameters, Jf ∈ ℜr×n, is defined as 
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(4-17) 

On the other hand, the Jacobian of the coarse model responses w.r.t. the coarse 
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model parameters and mapped frequency, denoted by Jc ∈ ℜr×(n+1), is given by 
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(4-18) 

while the Jacobian of the mapping w.r.t. the fine model parameters, denoted by JP ∈ 

ℜ(n+1)×n, is given by 
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(4-19) 

From (4-17)-(4-19), the sensitivities of the fine model responses can be 

approximated using 

Pcf JJJ ≈  (4-20) 

The accuracy of the approximation of Jf using (4-20) will depend on how well 

the SM-based neuromodel reproduces the behavior of the fine model in the training 

region, i.e., it will depend on the accuracy of the approximation (4-16). 

(4-20) represents a generalization of the lemma found by Bakr, Bandler, 

Georgieva and Madsen (1999), where a linear, frequency-insensitive mapping function 

was assumed.  Naturally, (4-20) will be accurate over a larger region since the mapping is 

nonlinear and frequency-sensitive, which has proved to be a very significant advantage 

when dealing with coarse models based on quasi-static approximations. 

If the mapping is implemented with a 3-layer perceptron with h hidden neurons 
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(4-15) is given by 
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(4-21) 

(4-22) 

(4-23) 

where W 

o ∈ ℜ(n+1)×h is the matrix of output weighting factors, bo∈ ℜn+1 is the vector of 

output bias elements, ΦΦΦΦ ∈ ℜh is the vector of hidden signals, s ∈ ℜh is the vector of 

activation potentials, W 

h ∈ ℜh×(n+1) is the matrix of hidden weighting factors, bh∈ ℜh is 

the vector of hidden bias elements and h is the number of hidden neurons.  A typical 

choice for the nonlinear activation functions is hyperbolic tangents, i.e., ϕ(⋅) = tanh(⋅).  

All the internal parameters of the neural network, bo, bh, W 

o and  W 

h are constant since 

the SM-based neuromodel has been already developed. 

The Jacobian JP is obtained from (4-21)-(4-23) as 

ho
P WJWJ Φ=  (4-24) 

where JΦ ∈ ℜh×h is a diagonal matrix given by JΦ = diag(ϕ ' (sj)), with j = 1… h. 

If the SM-based neuromodel uses a 2-layer perceptron, the Jacobian JP is simply 

o
P WJ =  (4-25) 

which corresponds to the case of a frequency-sensitive linear mapping.  Notice that by 

substituting (4-25) in (4-20) and assuming a frequency-insensitive neuromapping we 

obtain the lemma found in the work by Bakr, Bandler, Georgieva and Madsen (1999), 

since in the case of a 2-layer perceptron with no frequency dependence, W 

o ∈ ℜn×n. 
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4.4 EXAMPLE 

Consider a high-temperature superconducting (HTS) quarter-wave parallel 

coupled-line microstrip filter, whose physical structure is illustrated in Fig. 2.21.  The 

description of its physical structure, the design specifications, as well as the fine and 

coarse model descriptions can be found in Section 3.9.1. 

4.4.1 Yield Analysis and Optimization Assuming Symmetry 

The SM-based neuromodel of the HTS filter obtained in Chapter 2 is used to 

perform yield analysis and optimization.  This model was obtained assuming that the 

design parameters are xf = [L1 L2 L3 S1 S2 S3] T, and taking L0 = 50 mil, H = 20 mil, W = 7 

mil, εr = 23.425, loss tangent = 3×10−5; the metalization was considered lossless.  The 

corresponding SM-based neuromodel is illustrated in Fig. 4.1, which implements a 

frequency partial-space mapped neuromapping with 7 hidden neurons, mapping only L1, 

S1 and the frequency (3LP:7-7-3).  L1c and S1c in Fig. 4.1 denote the corresponding two 

physical dimensions as used by the coarse model, i.e., after being transformed by the 

mapping.  Notice from Fig. 2.21 that it is assumed that the physical structure of the HTS 

filter posses vertical and horizontal geometrical symmetry. 

Applying direct minimax optimization to the coarse model, we obtain the optimal 

coarse solution xc
* = [188.33  197.98  188.58 21.97  99.12  111.67]T (mils).  The coarse 

model response at xc
* is shown in Fig. 4.2.  The fine model response at the optimal coarse 

solution is shown in Fig. 4.3 using a fine frequency sweep. 

We apply direct minimax optimization to the SM-based neuromodel, taking xc
* 

as the starting point, to obtain the optimal SM-based neuromodel nominal solution xSMBN
* 
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= [185.79  194.23  184.91  21.05  82.31  89.32]T (mils).  Fig. 4.4 shows excellent 

agreement between the SM-based neuromodel response and the fine model response at 

xSMBN
*. 

To realize yield analysis, we consider 0.2% of variation for the dielectric constant 

and for the loss tangent, as well as 75 micron of variation for the physical dimensions, as 

suggested by Mansour (2000), with uniform statistical distributions.  These tolerances are 

larger than other typical manufacturing tolerances reported in the literature (e.g., see 

Burrascano and Mongiardo, 1999). 

We perform Monte Carlo yield analysis of the SM-based neuromodel around 

xSMBN
* with 500 outcomes using OSA90/hope (1997).  The responses for 50 of those 
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model
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Fig. 4.1 SM-based neuromodel of the HTS filter for yield analysis assuming symmetry 
(L1c and S1c correspond to L1 and S1 as used by the coarse model). 
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outcomes are shown in Fig. 4.5.  The yield calculation is shown in Fig. 4.6.  A yield of 

only 18.4% is obtained at xSMBN
*, which is reasonable considering the well-known high 

sensitivity of this microstrip circuit. 
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Fig. 4.2 Optimal coarse model response for the HTS filter. 
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Fig. 4.3 HTS filter fine model response at the optimal coarse solution. 
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Performing yield analysis using 500 outcomes with the SM-based neuromodel of 

the HTS filter takes a few tens of seconds on a conventional computer (PC AMD 

640MHz, 256M RAM, on Windows NT 4.0), while a single outcome calculation for the 

same circuit using an EM simulation takes around 5 hours on the same computer.  The 

SM-based neuromodel makes feasible the EM-based yield analysis of this complex 

microwave structure. 

We then apply yield optimization to the SM-based neuromodel with 500 

outcomes using the Yield-Huber optimizer available in OSA90/hope (1997), obtaining 

the following optimal yield solution: xSMBN
Y* = [183.04  196.91  182.22  20.04  77.67  

83.09]T (mils).  The corresponding responses for 50 of those outcomes are shown in Fig. 

4.7.  The yield is increased from 18.4% to 66%, as shown in Fig. 4.8.  Once again, an 

excellent agreement is observed between the fine model response and the SM-based 
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Fig. 4.4 HTS filter fine model response and SM-based neuromodel response at the 
optimal nominal solution xSMBN

*. 
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neuromodel response at the optimal yield solution xSMBN
Y* (see Fig. 4.9). 
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Fig. 4.5 Monte Carlo yield analysis of the HTS SM-based neuromodel responses around 

the optimal nominal solution xSMBN
* with 50 outcomes. 
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Fig. 4.6 Histogram of the yield analysis of the SM-based neuromodel around the 

optimal nominal solution  xSMBN
* with 500 outcomes. 
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Fig. 4.7 Monte Carlo yield analysis of the SM-based neuromodel responses around the 

optimal yield solution xSMBN
 Y* with 50 outcomes. 
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Fig. 4.8 Histogram of the yield analysis of the SM-based neuromodel around the 

optimal yield solution  xSMBN
Y* with 500 outcomes (considering symmetry). 
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4.4.2 Considering Asymmetric Variations due to Tolerances 

It is clear that our SM-based neuromodel assumes that the random variations in 

the physical design parameters due to the tolerances are symmetric (See Fig. 2.21 and 

Fig. 4.1). 

In order to make a more realistic statistical analysis of the HTS filter, we 

consider that all the lengths and separations in the structure are asymmetric, as illustrated 

in Fig. 4.10. 

Developing a new SM-based neuromodel for this asymmetric structure would be 

very time consuming, since the dimensionality of the problem becomes very large, and 

many fine model training points would be needed.  We propose the strategy illustrated in 
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Fig. 4.9 Fine model response and SM-based neuromodel response for the HTS filter at 

the optimal yield solution xSMBN
Y*. 
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Fig. 4.11 instead.  In this approach, we re-use the available neuromapping to take into 

account asymmetric random variations in the physical parameters due to their tolerances, 

taking advantage of the asymmetric nature of the coarse model (compare Fig. 4.1 and 

Fig. 4.11). 
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Fig. 4.10 Physical structure of the HTS filter considering asymmetry. 
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L1ac and S1ac in Fig. 4.11 now represent the corresponding length and separation 

for the coarse model components in the lower-left side of the structure, while L1bc and S1bc 

coarse
model

SM-based neuromodel

ANN

L1bc

S1bc

ANN

L1ac

S1ac

ωc

Re{S11}

Im{S11}

Re{S21}

Im{S21}

L0a

L2b

H

W
εr

L0b
L2a

L3

S3

S2a
S2b

S1a

L1a

ω

S1b

L1b

 
 

Fig. 4.11 SM-based neuromodel of the HTS filter with asymmetric tolerances in the 
physical parameters (L1ac and S1ac represent the corresponding length and 
separation for the coarse model components in the lower-left side of the 
structure -see Fig. 4.10- while L1bc and S1bc represent the corresponding 
dimensions for the upper-right section). 
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represent the corresponding dimensions for the upper-right section (see Fig. 3.8).  Notice 

also that assigning a separate neuromapping to each of these sections makes physical 

sense, since the electromagnetic interaction between the microstrip lines in either the 

lower-left or upper-right sections of the structure is much larger than that one between the 

left-right or lower-upper microstrip lines.  

Re-using the available neuromapping as described avoids the need for extra fine 

model evaluations.  Taking into account the excellent generalization performance of our 

SM-based neuromodel, this approach should provide a good approximation to the yield 

considering that the tolerances are small. 

We perform Monte Carlo yield analysis of the asymmetric SM-based neuromodel 

around the optimal nominal solution xSMBN
* with 500 outcomes.  The corresponding 

responses for 50 of those outcomes are shown in Fig. 4.12.  The histogram of the yield at 

the optimal nominal solution xSMBN
* with 500 outcomes is illustrated in Fig. 4.13.  A yield 

of only 14% was obtained for the asymmetric structure. 

We then perform Monte Carlo yield analysis of the asymmetric SM-based 

neuromodel around the optimal yield solution xSMBN
Y* with 500 outcomes; 50 of those 

outcomes are illustrated in Fig. 4.14.  Notice that the optimal yield design is kept 

symmetric all the time.  The yield obtained for the asymmetric structure around the 

optimal yield solution xSMBN
Y* is 68.8%, as illustrated in Fig. 4.15. 
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Fig. 4.12 Monte Carlo yield analysis of the SM-based neuromodel responses, considering 

asymmetry, around the optimal nominal solution  xSMBN
* with 50 outcomes. 
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Fig. 4.13 Histogram of the yield analysis of the SM-based neuromodel around the 

optimal yield solution  xSMBN
Y* with 500 outcomes (considering symmetry). 
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Fig. 4.14 Monte Carlo yield analysis of the SM-based neuromodel responses, considering 

asymmetry, around the optimal nominal solution  xSMBN
* with 50 outcomes. 
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Fig. 4.15 Histogram of the yield analysis of the asymmetric SM-based neuromodel 

around the optimal yield solution  xSMBN
Y* with 500 outcomes. 
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4.5 CONCLUDING REMARKS 

We have described in this chapter an efficient procedure to realize 

electromagnetics-based statistical analysis and yield optimization of microwave 

structures using space mapping-based neuromodels.  This follows the work by Bandler, 

Rayas-Sánchez and Zhang (2001a,b) 

We mathematically formulate the problem of statistical analysis and yield 

optimization using SM-based neuromodels. 

A formulation for the relationship between the fine and coarse model sensitivities 

through a nonlinear, frequency-sensitive neuromapping is found.  This formulation 

represents a generalization of the lemma found in the work by Bakr, Bandler, Georgieva 

and Madsen (1999). 

We describe a creative way to avoid the need of extra EM simulations to take 

into account asymmetric variations in the physical parameters due to tolerances by re-

using the available neuromappings and exploiting the asymmetric nature of the coarse 

models in a given SM-based neuromodel  

We illustrate our techniques by the yield analysis and optimization of a high-

temperature superconducting (HTS) quarter-wave parallel coupled-line microstrip filter.  

The yield is increased from 14% to 68.8% for this complex structure.  Excellent 

agreement between the EM responses and the SM-based neuromodel responses is found 

at both, the optimal nominal solution and the optimal yield solution. 
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Chapter 5 

NEURAL INVERSE SPACE 
MAPPING (NISM) OPTIMIZATION 

5.1 INTRODUCTION 

An elegant new algorithm for EM-based design of microwave circuits is 

described in this chapter: Neural Inverse Space Mapping (NISM) optimization.  This is 

the first Space Mapping (SM) algorithm that explicitly makes use of the inverse of the 

mapping from the fine to the coarse model parameter spaces. 

NISM optimization follows an aggressive formulation by not requiring a number 

of up-front fine model evaluations to start approximating the mapping. 

An innovative yet simple procedure for statistical parameter extraction avoids the 

need for multipoint matching and frequency mappings.   

A neural network whose generalization performance is controlled through a 

network growing strategy approximates the inverse of the mapping at each iteration.  The 

NISM step consists simply of evaluating the current neural network at the optimal coarse 

solution.  We prove that this step is equivalent to a quasi-Newton step while the inverse 

mapping remains essentially linear, and gradually departs from a quasi-Newton step as 

the amount of nonlinearity in the inverse mapping increases. 

We contrast our new algorithm with Neural Space Mapping (NSM) optimization, 

described in Chapter 3, as well as with the Trust Region Aggressive Space Mapping 
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exploiting Surrogates, developed by Bakr, Bandler, Madsen, Rayas-Sánchez and 

Søndergaard (2000). 

NISM optimization was proposed for the first time by Bandler, Ismail, Rayas-

Sánchez and Zhang (2001). 

5.2 AN OVERVIEW ON NISM OPTIMIZATION 

5.2.1 Notation 

Let the vectors xc and xf represent the design parameters of the coarse and fine 

models, respectively (xc, xf ∈ ℜn).  We denote the optimizable fine model responses at 

point xf and frequency ω by Rf (xf, ω) ∈ ℜr where r is the number of responses to be 

optimized.  For example, if the responses to be optimized are |S11| and |S21|, then r = 2.  

The vector Rf (xf) ∈ ℜm denotes the fine model responses at the Fp sample frequency 

points, where m = rFp.  Similarly, Rc (xc, ω) ∈ ℜr contains the r coarse model responses 

at point xc and frequency ω, while Rc (xc) ∈ ℜm denotes the coarse model responses at the 

Fp frequency points, to be optimized. 

Additionally, we denote the characterizing fine model responses at point xf ∈ ℜn 

and frequency ω by Rfs(xf, ω) ∈ ℜR, which includes the real and imaginary parts of all the 

available characterizing responses in the model (considering symmetry).  For example, 

for a 2-port reciprocal network they include Re{S11}, Im{S11}, Re{S21} and Im{S21}, and 

therefore R = 4.  The vector Rfs(xf) ∈ ℜM denotes the characterizing fine model responses 

at all the Fp frequency points, where M = RFp.  Similarly, Rcs(xc) ∈ ℜM denotes the 

corresponding characterizing coarse model responses at all the Fp frequency points. 
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5.2.2 Flow Diagram 

A flow diagram for NISM optimization is shown in Fig. 5.1.  We start by 

performing regular minimax optimization on the coarse model to find the optimal coarse 

solution xc
* that yields the desired response.  The characterizing fine model responses Rfs 

at the optimal coarse solution xc
* are then calculated. 

Calculate the fine responses
Rfs(xf 

(i))

PARAMETER EXTRACTION:
Find xc

(i) such that

Rcs(xc
(i)) ≈ Rfs(xf 

(i))

COARSE OPTIMIZATION: find the
optimal coarse model solution xc

* that
generates the desired response

xf 
(i+1) = N(xc

*)

Choose the coarse optimal solution as a
starting point for the fine model

xf
(i) =  xc

*

Start

INVERSE
NEUROMAPPING:

Find the simplest neural
network N  such that

xf 
(l) ≈ N (xc

(l))

l = 1,..., i

i = i + 1

xf
(i) ≈ xf

(i+1)

no

yes

End

i = 1

 
Fig. 5.1 Flow diagram for Neural Inverse Space Mapping (NISM) optimization. 
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We realize parameter extraction, which consists of finding the coarse model 

parameters that makes the characterizing coarse responses Rcs as close as possible to the 

previously calculated Rfs.   

We continue by training the simplest neural network N that approximates the 

inverse of the mapping from the fine to the coarse parameter space at the available points. 

The new point in the fine model parameter space is then calculated by simply 

evaluating the neural network at the optimal coarse solution.  If the maximum relative 

change in the fine model parameters is smaller than a previously defined amount we 

finish, otherwise we calculate the characterizing fine model responses at the new point 

and continue with the algorithm. 

The main operational blocks of the flow diagram in Fig. 5.1 (parameter 

extraction and inverse neuromapping) are described in detail in the following sections.  

5.3 PARAMETER EXTRACTION 

The parameter extraction procedure at the ith NISM iteration is formulated as the 

following optimization problem 

)(minarg)(
cPE

c

i
c U xxx =  

2
2)()( ccPEU xex =  

)()()( )(
ccs

i
ffsc xRxRxe −=  

(5-1) 

 

(5-2) 

 

(5-3) 

We solve (5-1) using the Levenberg-Marquardt algorithm for nonlinear curve 

fitting available in the Matlab Optimization Toolbox (1999). 

We normally use xc
* as the starting point for solving (5-1).  This might not be a 
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good starting point when an extremely severe matching problem is being solved, one that 

has some poor local minimum around xc
*.  If the algorithm is trapped in a poor local 

minimum, we change the starting point for (5-1) by taking a small random perturbation 

∆x around xc
* until we find an acceptable local minimum, i.e., until we obtain a good 

matching between both fine and coarse models. 

The maximum perturbation ∆max is obtained from the maximum absolute 

sensitivity of the parameter extraction objective function at xc
* as follows 

∞
∇

=
)( *max

cPE

PE

U x
δ∆  (5-4) 

Let rand ∈ ℜn be a vector whose elements take random values between 0 and +1 

every time it is evaluated.  The values of the elements of ∆x are calculated as 

)12(max −= kk randx ∆∆ ,   k = 1,… , n (5-5) 

A value of δPE = 0.03 is used in our implementation.  Many other values of δPE 

could be used in (5-4), since we use it only to escape from a poor local minimum.   

A similar strategy for statistical parameter extraction was proposed by Bandler, 

Biernacki, Chen and Omeragić (1997), where an exploration region is first created by 

predefining a fixed number of starting points around xc
*. 

The proposed algorithm for realizing parameter extraction is stated as follows 

Algorithm: Parameter Extraction 
Begin 
         solve (5-1) using xc

* as starting point 
         while ||e(xc

(i))||∞ > εPE 
                  calculate ∆x using (5-4) and (5-5) 
                  solve (5-1) using xc

*+∆x as starting point 
end 

 

A value of εPE = 0.15 is used in our implementation, assuming that all the 
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response values are normalized. 

5.3.1 Illustration of the Statistical Parameter Extraction 
Procedure 

To illustrate the benefits of using the parameter extraction algorithm described in 

the previous section, consider the problem of matching the responses of two simple 

bandpass lumped filters, illustrated in Fig. 5.2.  To make the argument clearer, we will 

assume that both filters have only one optimization variable or design parameter.   

Both the coarse and “fine” models consist of canonical sixth-order band pass 

filters. The coarse model has L1c = 0.0997 nH, L2c = 17.455 nH, C1c = xc and C2c = 

0.058048 pF, being xc its design parameter.  The “fine” model has L1f = L1c  + 0.0001 nH, 

L2f = L2c + 0.017 pH, C1f = xf + Cp and C2f = C2c + 0.00006 pF, where xf is its design 

parameter and Cp is a shifting parameter that will be used to control the degree of 

deviation between both models.   

We take xc
* = 10.1624 pF.  In parameter extraction we want to find xc such that 

Rc(xc) = Rf(xc
*), where Rc and Rf contain the magnitude of S21 for each model, at all the 

frequency points of interest.  The characterizing responses for this problem include the 

L1C C1C L1C C1C

L2C C2C

L1f C1f L1f C1f

L2f C2f

 
(a)                                                                          (b) 

Fig. 5.2 Sixth-order band pass lumped filters to illustrate the proposed parameter 
extraction procedure: (a) coarse model and (b) “fine” model. 
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real and the imaginary parts of S11 and S21. 

Fig. 5.3 illustrates the coarse and “fine” model responses at xc
* when a value of 

Cp = 6 pF is used in the fine model.  Fig. 5.4a shows the objective function (5-2) as a 

function of xc, the starting point xc
*, and the solution found if the statistical procedure is 

not implemented (i.e., without perturbing the starting point).  Clearly, the conventional 

parameter extraction procedure is trapped in a poor local minimum, and the matching 

between both models is completely erroneous (see Fig. Fig. 5.4b). 

Fig. 5.5 shows the results when the proposed algorithm for parameter extraction 

is used.  The poor local minima are avoided by randomly perturbing the starting point, 

and excellent match is achieved. 

We repeated the experiment with an even more severe misalignment, taking Cp = 

10 pF.  The corresponding results are shown in Fig. 5.6 and Fig. 5.7.  Once again, the 
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Fig. 5.3 Coarse (−) and fine (o) model responses of the band pass lumped filters at the 

optimal coarse solution xc
*. 
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proposed parameter extraction algorithm avoids poor matching. 
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(b) 

Fig. 5.4 Conventional parameter extraction process: (a) objective function, (b) coarse 
(−) and fine (o) model responses after parameter extraction (Cp = 6 pF). 
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Similar experiments were realized for different values of Cp, repeating the 

parameter extraction procedure 10 times for each case in order to test the variation in the 
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(b) 

Fig. 5.5 Proposed parameter extraction process: (a) objective function, (b) coarse (−) 
and fine (o) model responses after parameter extraction (Cp = 6 pF). 
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number of attempts needed for successful parameter extraction.  Table 5.1 shows some of 

the results. 
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(b) 

Fig. 5.6 Conventional parameter extraction process: (a) objective function, (b) coarse 
(−) and fine (o) model responses after parameter extraction (Cp = 10 pF). 



Chapter 5  NEURAL INVERSE SPACE MAPPING (NISM) OPTIMIZATION 111 

 

 

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

8

xc

pa
ra

m
et

er
 e

xt
ra

ct
io

n 
ob

je
ct

iv
e 

fu
nc

tio
n

starting point (o)
PE solution (∗)

 
(a) 

 
 

3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.2

0.4

0.6

0.8

1

frequency (GHz)

|S
21

|

 
(b) 

Fig. 5.7 Proposed parameter extraction process: (a) objective function, (b) coarse (−) 
and fine (o) model responses after parameter extraction (Cp = 10 pF). 
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TABLE 5.1 
RESULTS FOR 10 STATISTICAL PARAMETER  

EXTRACTIONS FOR THE LUMPED BANDPASS FILTER 
 

  

PE # number of attempts needed for successful PE 
    

    

 Cp = 5 pF Cp = 6 pF Cp = 10 pF 
    

1 2 4 7 
2 3 3 6 
3 2 3 6 
4 4 2 3 
5 3 4 2 
6 2 6 3 
7 2 6 3 
8 2 4 7 
9 6 2 2 
10 4 2 3 

    

 

5.4 INVERSE NEUROMAPPING 

When training the neural network N that implements the inverse mapping we 

solve the following optimization problem 

)(minarg* www NU=  

2

2
][)( TT

lNU "" ew =  

),( )()( wxNxe l
c

l
fl −= ,   il ,,1…=  

(5-6) 

 

(5-7) 

 

(5-8) 

where i is the current NISM iteration and vector w contains the internal parameters 

(weights, bias, etc.) of the neural network N. 

The starting point w(0) for solving (5-6) is a unit mapping, i.e. N (xc
(l), w(0)) = xc

(l), 

for l = 1,…, i.  Closed form expressions were derived in Section 5.2 to implements unit 

mappings for different nonlinear activation functions. 

We use the Scaled Conjugate Gradient (SCG) algorithm available in the 
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Matlab Neural Network Toolbox (1998) for solving (5-6).  Notice that the time 

consumed in solving (5-6) is almost neglectable since no coarse or fine model 

simulations are needed. 

To control the generalization performance of the neural network N, we follow a 

network growing strategy (see Haykin, 1999), in which case we start with a small 

perceptron to match the initial points and then add more neurons only when we are 

unable to meet a small error. 

We initially assume a 2-layer perceptron given by 

o
c

o
fc bxWxwxN +==),(  (5-9) 

where W 

o ∈ ℜn×n is the matrix of output weighting factors, bo∈ ℜn is the vector of output 

bias elements, and vector w contains bo and the columns of W 

o.  The starting point is 

obtained by making W 

o = I and bo = 0. 

If a 2-layer perceptron is not sufficient to make the learning error UN(w*) small 

enough, then we use a 3-layer perceptron with h hidden neurons given by 

o
c

o
c bxΦWwxN += )(),(  

T
hc sss ])()()([)( 21 ϕϕϕ …=xΦ  

h
c

h bxWs +=  

(5-10) 

(5-11) 

(5-12) 

where W 

o ∈ ℜn×h, bo∈ ℜn, ΦΦΦΦ(xc) ∈ ℜh is the vector of hidden signals, s ∈ ℜh is the vector 

of activation potentials, W 

h ∈ ℜh×n is the matrix of hidden weighting factors, bh∈ ℜh is 

the vector of hidden bias elements and h is the number of hidden neurons.  In our 

implementation of NISM optimization we use hyperbolic tangents as nonlinear activation 

functions, i.e., ϕ(⋅) = tanh(⋅).  Vector w contains vectors bo, bh, the columns of W 

o and the 
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columns of W 

h. 

Our starting point for solving (5-6) using (5-10) is also a unit mapping, which is 

obtained by making bo = 0, bh = 0, W 

h = 0.1[I 0]T and W 

o = 10[I 0], assuming that the 

training data has been scaled between −1 and +1 (see Section 2.5.2).  Notice that we 

consider h ≥ n in order to achieve the unit mapping. 

The algorithm for finding the simplest inverse neuromapping is stated as follows 

Algorithm: Inverse Neuromapping 
begin 

solve (5-6) using (5-9) 
h = n 
while UN(w*) > εL 

solve (5-6) using (5-10) 
h = h+1 

end 
 

In our implementation we use εL = 1×10−4.  Notice that the algorithm for finding 

the inverse neuromapping uses a 2-layer perceptron during at least the first n+1 NISM 

iterations, since the points (xc
(i), xf

(i)) can be mapped with a linear mapping for i = 1 … 

n+1.  A 3-layer perceptron is needed only when we exceed n+1 NISM iterations and the 

mapping is significantly nonlinear. 

5.5 NATURE OF THE NISM STEP 

In this section we prove that the NISM step, xf 
(i+1) = N(xc

*), is equivalent to a 

quasi-Newton step while the inverse mapping built during NISM optimization remains 

linear, i.e., while a 2-layer perceptron is enough to approximate the inverse mapping.  We 

also prove that the NISM step gradually departs from a quasi-Newton step as the amount 

of nonlinearity needed in the inverse mapping increases. 



Chapter 5  NEURAL INVERSE SPACE MAPPING (NISM) OPTIMIZATION 115 

5.5.1 Jacobian of the Inverse Mapping 

From (5-9), the Jacobian JN of the inverse mapping N(xc) when a 2-layer 

perceptron is employed is given by 

o
N WJ =  (5-13) 

When a 3-layer perceptron is used, the Jacobian JN is obtained from (5-10) to 

(5-12) as 

ho
N WJWJ Φ=  (5-14) 

where JΦ ∈ ℜh×h is a diagonal matrix given by JΦ = diag(ϕ ' (sj)), with j = 1… h.  We use 

(5-13) and (5-14) to demonstrate the nature of the NISM step xf 
(i+1) = N(xc

*). 

5.5.2 NISM Step vs. Quasi-Newton Step 

A general space mapping optimization problem can be formulated as solving the 

system of nonlinear equations 

0=−= *)()( cff xxPxf  (5-15) 

where xc = P(xf) is the mapping function that makes the coarse model behave as the fine 

model, i.e., Rc(P(xf)) ≈ Rf (xf).  A Newton step for solving (5-15) is given by 

fJxx 1)()1( −+ −= P
i

f
i

f  (5-16) 

where JP ∈ ℜn×n is the Jacobian of the mapping function P(xf).  This can be stated in an 

equivalent manner by using the Jacobian JN ∈ ℜn×n of the inverse of the mapping xf = 

N(xc) (see appendix B) 

fJxx N
i

f
i

f −=+ )()1(  (5-17) 

Approximating JN directly involves the same computational effort as 
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approximating JP, but calculating the next step using (5-17) is computationally much 

more efficient than using (5-16), where a system of linear equations, possibly ill-

conditioned, must be solved. 

If a 2-layer perceptron is being used, we substitute (5-13) in (5-17) to obtain 

)( *)()()1(
c

i
c

oi
f

i
f xxWxx −−=+  (5-18) 

which can be express using (5-9) as 

)()( *)()(*)1(
c

i
f

oi
fc

oi
f xNxbxxWx =+−−=+  (5-19) 

From (5-17) and (5-19) we conclude that while the inverse mapping built during 

NISM optimization remains linear, the NISM step is equivalent to a quasi-Newton step.  

Notice that we do not use any of the classical updating formulae to calculate an 

approximation of the inverse of the Jacobian; this is done by simply evaluating the 

current neural network at the optimal coarse solution. 

If a 3-layer perceptron is being used, we substitute (5-14) in (5-17) to obtain 

)( *)()()1(
c

i
c

hoi
f

i
f xxWJWxx −−=+

Φ  (5-20) 

Adding and subtracting W 

oJΦ bh to (5-20)  

)()(*)1( )()( i
f

hi
c

hoh
c

hoi
f xbxWJWbxWJWx ++−+=+

ΦΦ  (5-21) 

Substituting (5-12) in (5-21)  

)()(*)1( )()( i
f

i
c

o
c

oi
f xxsJWxsJWx +−=+

ΦΦ  (5-22) 

Expanding the term JΦ s(xc) we obtain 

T
hhc ssss ])(')('[)( 11 ϕϕΦ …=xsJ . (5-23) 

Since we are using hyperbolic tangents as nonlinear activation functions, when a 

small amount of nonlinearity is present (e.g., sj < 0.1), ϕ(sj) = sj, and ϕ ' (sj)sj = sj = ϕ(sj), 
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for j = 1,…, h, and using (5-11) we express (5-23) as 

)()( cc xΦxsJ =Φ  (5-24) 

Substituting (5-24) in  (5-22) 

)()(*)1( )()( i
f

i
c

o
c

oi
f xxΦWxΦWx +−=+  (5-25) 

Adding and subtracting bo to (5-25) and using (5-10) we express (5-25) as 

)()()( *)()(*)1(
c

i
f

oi
c

oo
c

oi
f xNxbxΦWbxΦWx =+−−+=+  (5-26) 

In conclusion, the NISM step gradually departs from a quasi-Newton step as the 

amount of nonlinearity needed in the inverse mapping increases. 

5.6 TERMINATION CRITERION 

As illustrated in the flow diagram of Fig. 5.1, we stop NISM optimization when 

the new iterate is close enough to the current point.  We do this by testing the relative 

change in the fine model parameters.  If the expression 

)(
2

)(

2

)()1( i
fendend

i
f

i
f xxx +≤−+ εε  (5-27) 

is true, we end NISM optimization taking xf
(i) as the solution, otherwise we continue.  We 

use εend = 5×10−3 in our implementation.  Notice that the fine model is not evaluated at 

the point xf
(i+1). 

5.7 EXAMPLES 

5.7.1 Two-Section Impedance Transformer 

As an illustrative case, consider the classical test problem of designing a 
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capacitively-loaded 10:1 two-section impedance transformer, proposed for the first time 

by Bandler (1969).  The proposed coarse and “fine” models are shown in Fig. 5.8.  The 

coarse model consists of ideal transmission lines, while the “fine” model consists of 

capacitively-loaded ideal transmission lines, with C1 = C2 = C3 = 10pF.  The design 

specifications are |S11| ≤ 0.50 for frequencies between 0.5 GHz and 1.5 GHz. 

The electrical lengths of the two transmission lines at 1.0 GHz are selected as 

design parameters.  The characteristic impedances are kept fixed at the following values: 

Z1 = 2.23615 Ω, Z2 = 4.47230 Ω.  Both models were implemented in OSA90/hope 

(1997). 

The optimal coarse model solution is xc
* = [90  90]T (degrees).  The coarse and 

fine model responses at xc
* are shown in Fig. 5.9.  We use only 10 frequency points from 

0.2 to 1.8 GHz for the “fine” model. 

NISM optimization requires only 3 “fine” model evaluations to solve this 

RL=10Ω

L1 L2

Zin

 
(a) 

 

RL=10Ω

L1 L2

Zin C2 C3C1

 
(b) 

Fig. 5.8 Two-section impedance transformer: (a) coarse model, (b) “fine” model. 
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problem.  The values of the fine model parameters at each iteration are shown in Table 

5.2.  A 2-layer perceptron was enough to approximate the inverse mapping at all NISM 

iterations.  The “fine” model response at the NISM solution is compared with the optimal 

coarse model response in Fig. 5.10.  The fine model minimax objective function values at 

each NISM iteration are shown in Fig. 5.11. 

Since both the coarse and “fine” models are actually very fast to evaluate, we 

applied direct minimax optimization to the “fine” model, obtaining xf
* = [79.2651  

74.2322]T after 64 “fine” model evaluations.  In Fig. 5.12 we compare the fine model 

response at this solution with the optimal NISM response; an excellent match is observed. 

The same problem was solved by Bakr, Bandler, Madsen, Rayas-Sánchez and 

Søndergaard (2000) using Trust Region Aggressive Space Mapping exploiting 

Surrogates.  It is noticed that this algorithm required 7 “fine” model evaluations. 
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Fig. 5.9 Coarse (−) and fine (o) model responses at the optimal coarse solution xc

* for 
the two-section impedance transformer. 
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TABLE 5.2 
FINE MODEL PARAMETERS FOR THE 

TWO-SECTION IMPEDANCE TRANSFORMER 
AT EACH NISM ITERATION 

 
  

i xf
(i) T 

  
  

1 [90   90] 
2 [84.1990   83.0317] 
3 [79.3993   73.7446] 

  

 

5.7.2 Bandstop Microstrip Filter with Open Stubs 

We apply NISM optimization to a bandstop microstrip filter with quarter-wave 

resonant open stubs, whose physical structure is illustrated in Fig. 3.15.  The results 

obtained are compared with those described in Chapter 3.  L1, L2 are the open stub lengths 

and W1, W2 the corresponding widths.  An alumina substrate with thickness H = 25 mil, 
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Fig. 5.10 Optimal coarse model response (−) and fine model response at NISM solution 

(o) for the two-section impedance transformer. 
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width W0 = 25 mil and dielectric constant εr = 9.4 is used for a 50 Ω feeding line. 
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Fig. 5.11 Fine model minimax objective function values for the two-section impedance 

transformer at each NISM iteration. 
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Fig. 5.12 Fine model response at NISM solution (o) and at direct minimax solution (−) 

for the two-section impedance transformer. 
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The specifications are the same as in Chapter 3:  |S21| ≤ 0.01 in the stopband and 

|S21| ≥ 0.9 in the passband, where the stopband lies between 9.3 GHz and 10.7 GHz, and 

the passband includes frequencies below 8 GHz and above 12 GHz.  The design 

parameters are xf = [W1 W2 L0 L1 L2] T. 

Sonnet’s em (1997) driven by Empipe (1997) was again employed as the 

fine model, using a high-resolution grid with a 1mil×1mil cell size. 

We use exactly the same coarse model described in Chapter 3, illustrated in Fig. 

3.16.  We also use the same optimal coarse model solution used for NSM optimization.  

The coarse and fine model responses at the optimal coarse solution are shown in Fig. 

5.13, which are equivalent to those shown in Fig. 3.17. 

NISM optimization requires only 4 fine model evaluations to solve this problem.  

The sequence of iterates is shown in Table 5.3 (all the points are on the grid, to avoid 
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Fig. 5.13 Coarse and fine model responses at the optimal coarse solution for the bandstop 

filter with open stubs: OSA90/hope (−) and em (o). 
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interpolation).  A 2-layer perceptron was enough to approximate the inverse mapping at 

all NISM iterations.  The fine model minimax objective function values at each NISM 

iteration are shown in Fig. 5.14.  The fine model response at the NISM solution is 

compared with the optimal coarse model response in Fig. 5.15. 

 

 

TABLE 5.3 
FINE MODEL PARAMETERS FOR THE 

BANDSTOP FILTER WITH OPEN STUBS 
AT EACH NISM ITERATION 

 
  

i xf
(i) T 

  
  

1 [6  9  106  110  109] 
2 [7  11  103  112  111] 
3 [9  20  95  115  115] 
4 [9  19  95  115  114] 

  

 

1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

iteration

fin
e 

m
od

el
 m

in
im

ax
 o

bj
ec

tiv
e 

fu
nc

tio
n

 
Fig. 5.14 Fine model minimax objective function values for the bandstop microstrip filter 

at each NISM iteration. 
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As described in Chapter 3, NSM optimization required 13 fine model evaluations 

to find the solution to this problem, whose response is shown in Fig. 5.16 (this figure is 
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Fig. 5.15 Coarse model response (−) at xc

* and fine model response (o) at NISM solution 
for the bandstop microstrip filter with open stubs. 
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Fig. 5.16 Coarse model response (−) at xc

* and fine model response (o) at NSM solution, 
obtained in Chapter 3, for the bandstop microstrip filter with open stubs. 
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equivalent to Fig. 3.22: we now use a linear scale for the responses to emphasize the 

quality of the solutions). 

It is remarkable that NISM optimization not only requires fewer fine model 

evaluations, but also arrives at a solution closer to the solution of the original 

optimization problem (compare Fig. 5.15 with Fig. 5.16). 

5.7.3 High Temperature Superconducting Microstrip Filter 

We apply NISM optimization to a high-temperature superconducting (HTS) 

quarter-wave parallel coupled-line microstrip filter, and contrast our results with those 

obtained in Chapter 3 for the same problem.  The physical structure of the HTS filter is 

illustrated in Fig. 2.21. 

L1, L2 and L3 are the lengths of the parallel coupled-line sections and S1, S2 and S3 

are the gaps between the sections.  The width W is the same for all the sections as well as 

for the input and output lines, of length L0.  A lanthanum aluminate substrate with 

thickness H and dielectric constant εr is used. 

We use the same specifications: |S21| ≥ 0.95 in the passband and |S21| ≤ 0.05 in the 

stopband, where the stopband includes frequencies below 3.967 GHz and above 4.099 

GHz, and the passband lies in the range [4.008GHz, 4.058GHz].  The design parameters 

are xf = [L1 L2 L3 S1 S2 S3] T. 

We use exactly the same fine and coarse models as described in Chapter 3.  The 

schematic representation of the coarse model is illustrated in Fig. 3.8. 

The same optimal coarse model solution is used as in Chapter 3.  The coarse and 

fine model responses at the optimal coarse solution are shown in Fig. 5.17.  These 
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responses are equivalent to those shown in Fig. 3.9, but now they are plotted using linear 

scaling.  Only 14 frequency points per frequency sweep are used for the fine model, as 

before. 

After only 3 fine model simulations the optimal NISM solution was found.  The 

sequence of fine model parameters at each NISM iteration is shown in Table 5.4 (all the 

points are on the grid, to avoid interpolation).  A 2-layer perceptron was enough to 

approximate the inverse mapping at all NISM iterations. 

Fig. 5.18 compares the optimal coarse response with the fine model response at 

the NISM solution xf
NISM using a fine frequency sweep.  An excellent match is achieved 

by the NISM solution. 

A more detailed comparison in the passband is shown in Fig. 5.19, using a very 

fine frequency sweep. 
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Fig. 5.17 Coarse and fine model responses at the optimal coarse solution for the HTS 

filter: OSA90/hope (−) and em (o). 
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Fig. 5.18 Coarse model response at xc

* (−), and fine model response at xf
NISM (o), for the 

HTS filter using a fine frequency sweep. 
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Fig. 5.19 Coarse model response at xc

* (−) and fine model response at xf
NISM (o) for the 

HTS filter, in the passband, using a very fine frequency sweep. 
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TABLE 5.4 
FINE MODEL PARAMETERS FOR THE 

HTS MICROSTRIP FILTER 
AT EACH NISM ITERATION 

 
  

i xf
(i) T 

  
  

1 [188  198  189  22  99  112] 
2 [187  196  187  21  84    92] 
3 [186  194  185  20  80    89] 

  

 
 

 

The fine model minimax objective function values at each NISM iteration for this 

problem are shown in Fig. 17 

Fig. 5.21 reproduce the results shown in Fig. 3.14, obtained by applying NSM 

optimization to the same problem, where the optimal NSM solution was found after 14 

fine model evaluations, as described in Section 3.9.1. 
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Fig. 5.20 Fine model minimax objective function values for the HTS microstrip filter at 

each NISM iteration. 
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This problem was also solved by Bakr, Bandler, Madsen, Rayas-Sánchez and 

Søndergaard (2000) using Trust Region Aggressive Space Mapping exploiting 

Surrogates.  It is noticed that this algorithm required 8 fine model evaluations; the 

corresponding fine model minimax objective function values are shown in Fig. 5.22. 

Once again, it is seen that NISM optimization is not only more efficient in terms 

of the required fine model evaluations, but also yields a solution closer to the optimal 

solution of the original optimization problem (compare Fig. 5.19 with Fig. 5.21, as well 

as Fig. 5.20 with Fig. 5.22). 

For the two previous examples of NISM optimization, parameter extraction was 

successfully performed in just one attempt at every NISM iteration.  That was not the 

case for the HTS filter, where the parameter extraction objective function has many poor 

local minima around xc
*.  Our proposed algorithm for statistical parameter extraction 

overcame this problem. 
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Fig. 5.21 Coarse model response at xc

* (−) and fine model response at xf
NSM (o) for the 

HTS filter, in the passband, using a very fine frequency sweep. 
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We applied NISM optimization to the HTS filter 5 times in order to test the 

statistical parameter extraction results.  In Table 5.5 we show the number of attempts 

needed for successful parameter extraction at each NISM iteration for the 5 

optimizations.  Exactly the same sequence of points illustrated in Table 5.4 was predicted 

by each of the 5 optimizations. 

Table 5.5 also confirms that the most challenging parameter extraction problems 

in a space mapping-based algorithm appears at the first SM iterations, when the fine 

model response is far from the optimal coarse model response.  As the space mapping 

algorithm progresses, the fine model response gets closer to the optimal coarse model 

response, making each time the optimal coarse solution xc
* a better starting point for the 

parameter extraction. 
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Fig. 5.22 Fine model minimax objective function values for the HTS microstrip filter at 

each iteration using Trust Region Aggressive Space Mapping exploiting 
Surrogates, as obtained by Bakr, Bandler, Madsen, Rayas-Sánchez and 
Søndergaard (2000). 
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TABLE 5.5 
PARAMETER EXTRACTION RESULTS FOR 5 
NISM OPTIMIZATIONS FOR THE HTS FILTER 

 
  

i number of attempts needed for successfull PE 
      

1 12 9 3 10 8 
2 3 3 6 7 3 
3 1 1 1 1 1 

      

 
 

5.7.4 Lumped Parallel Resonator 

In the three examples of NISM optimization described so far, the inverse 

neuromapping was always approximated by a 2-layer perceptron.  Even in the case of the 

HTS filter, which is far from trivial and computationally very intensive, a simple linear 

inverse mapping was enough to drive the fine model toward the optimal solution in a few 

iterations.  In order to demonstrate the behavior of NISM optimization when a nonlinear 

inverse mapping is actually needed, consider the following synthetic problem.  Both the 

coarse and the “fine” models are illustrated in Fig. 5.23. 

The coarse model consists of a canonical parallel lumped resonator (see Fig. 

RC LC CC RP

LF CF
RF

LP

 
(a)                                                             (b) 

Fig. 5.23 Models for the parallel lumped resonator used to illustrate a nonlinear inverse 
mapping: (a) coarse model, (b) fine model. 
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5.23a), whose design parameters are xc = [RC  LC  CC]T.  The “fine” model can be seen as 

the same parallel lumped resonator with a parasitic series resistor RP associated to the 

inductance LF, and a parasitic series inductance LP associated to the capacitor CF (see Fig. 

5.23b).  The fine model design parameters are xf  = [RF  LF  CF]T.  We take RP = 0.5 Ω, LP 

= 0.1 nH.  The numerical values of RC and RF are expressed in ohms, those of LC and LF 

in nH and those of CC and CF in pF. 

The design specifications are (assuming a reference impedance of 50 Ω): S11 > 

0.8 from 1 GHz to 2.5 GHz and from 3.5 GHz to 5 GHz, S11 < 0.2 from 2.95 GHz to 

3.05 GHz. 

Performing direct minimax optimization on the coarse model we find the optimal 

coarse solution xc
* = [50  0.2683  10.4938]T.  The optimal coarse model response and the 

fine model response at the optimal coarse solution are illustrated in Fig. 5.24. 
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Fig. 5.24 Coarse model response (−) and “fine” model response (o) at the optimal coarse 

solution xc
* for the parallel lumped resonator. 
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Applying NISM optimization, we find the optimal space mapped solution after 7 

iterations.  The fine model minimax objective function values at each iteration are shown 

in Fig. 5.25.  The fine model points at each NISM iteration are illustrated in Table 5.6. 

 

 

TABLE 5.6 
FINE MODEL PARAMETERS FOR THE 

PARALLEL LUMPED RESONATOR 
AT EACH NISM ITERATION 

 
  

i xf
(i) T 

  
  

1 [50  0.2683  10.4938] 
2 [64.9696   0.3147   4.4611] 
3 [72.9922   0.3378   5.5555] 
4 [90.0973   0.3623   6.1337] 
5 [105.5360   0.3516   5.9095] 
6 [110.2669   0.3591   6.0519] 
7 [111.0306   0.3594   6.0518] 
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Fig. 5.25 Fine model minimax objective function values for the parallel lumped resonator 

filter at each NISM iteration. 
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In this problem, NISM optimization uses a 2-layer perceptron only during the 

first 4 iterations (n+1, as expected), and it uses a 3-layer perceptron in the last 3 

iterations.  The final inverse mapping is approximated using a 3-layer perceptron with 3 

hidden neurons only.  It is interesting to notice that the linear mapping is able to obtain a 

response that satisfies the specifications, since the minimax objective function at the 

fourth iteration is already negative (see Fig. 5.25). 

We compare in Fig. 5.26 the coarse model response at the optimal coarse 

solution and the fine model response at the NISM solution xf
NISM = [111.0306  0.3594  

6.0518]T. 

From this example we can see that even for an extremely simple microwave 

optimization problem, the complexity of the relationship between the coarse and the fine 

models can demand a nonlinear inverse mapping to align both models during NISM 

optimization. 
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Fig. 5.26 Coarse model response at optimal coarse solution (−) and “fine” model 

response at the NISM  solution (o) for the parallel lumped resonator. 
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We can also confirm from this example and the HTS filter example that the 

degree of misalignment between the coarse and fine model responses at the starting point 

is not an indication of the the degree of nonlinearity in the inverse mapping between both 

models (compare Fig. 5.24 and Fig. 5.17). 

5.8 CONCLUSIONS 

We have described in this chapter Neural Inverse Space Mapping (NISM) 

optimization for EM-based design of microwave structures, where the inverse of the 

mapping is exploited for the first time in a space mapping algorithm. 

NISM optimization follows an aggressive approach in the sense that it does not 

require up-front EM simulations to start building the mapping. 

A simple statistical procedure overcomes the existence of poor local minima 

during parameter extraction, avoiding the need of multipoint parameter extraction or 

frequency mapping. 

A neural network whose generalization performance is controlled through a 

network growing strategy approximates the inverse of the mapping at each iteration.  We 

have found that for many practical microwave problems, a simple linear inverse mapping, 

i.e., a 2-layer perceptron, is sufficient to reach a practically optimal fine model response. 

The NISM step simply consists of evaluating the current neural network at the 

optimal coarse solution.  We prove that this step is equivalent to a quasi-Newton step 

while the inverse mapping remains essentially linear, and gradually departs from a quasi-

Newton step as the amount of nonlinearity in the inverse mapping increases. 

We also found that our new algorithm exhibits superior performance over the 
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Neural Space Mapping (NSM) optimization algorithm, described in Chapter 3, as well as 

over the Trust Region Aggressive Space Mapping exploiting Surrogates, developed by 

Bakr, Bandler, Madsen, Rayas-Sánchez and Søndergaard (2000). 
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Chapter 6 

CONCLUSIONS 
 

 

This thesis has presented innovative methods for electromagnetics-based 

computer-aided modeling and design of microwave circuits exploiting artificial neural 

networks (ANNs) and space mapping (SM) technology.  We have illustrated these 

methods by modeling and optimizing several practical microstrip structures. 

Five powerful techniques to generate SM-based neuromodels have been 

described and illustrated: Space Mapped Neuromodeling (SMN), Frequency-Dependent 

Space Mapped Neuromodeling (FDSMN), Frequency Space Mapped Neuromodeling 

(FSMN), Frequency Mapped Neuromodeling (FMN) and Frequency Partial-Space 

Mapped Neuromodeling (FPSMN). 

The SM-based neuromodeling techniques make use of the vast set of empirical 

and circuit-equivalent models already available.  They need a much smaller number of 

fine model evaluations for training, improve the generalization performance and reduce 

the complexity of the ANN topology w.r.t. the conventional neuromodeling approach. 

Using frequency-sensitive neuromappings significantly expand the usefulness of 

microwave empirical models that were developed under quasi-static assumptions.  We 

have also demonstrated that neuromapping the frequency can be an effective technique to 

align severely shifted responses. 
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For many practical microwave problems it is not necessary to map the complete 

set of physical parameters.  By establishing a partial mapping, a more efficient use of the 

implicit knowledge in the empirical model is achieved and the corresponding 

neuromapping becomes simpler and easier to train. 

We have also described an innovative algorithm for EM optimization that 

exploits our SM-based neuromodeling techniques: Neural Space Mapping (NSM) 

optimization.  

In NSM optimization, an initial mapping is established by performing a reduced 

number of upfront EM simulations.  The coarse model sensitivities are exploited to select 

those initial points.  

NSM does not require parameter extraction to predict the next point.  Instead, we 

use Huber optimization to train simple SM-based neuromodels at each iteration.  These 

SM-based neuromodels are developed without using testing points: their generalization 

performance is controlled by gradually increasing their complexity starting with a 3-layer 

perceptron with 0 hidden neurons.  The next point is predicted by optimizing the current 

SM-based neuromodel at each iteration. 

We have proposed an efficient strategy to realize electromagnetic-based 

statistical analysis and yield optimization of microwave structures using SM-based 

neuromodels. 

We mathematically formulate the problem of statistical analysis and yield 

optimization using SM-based neuromodels.  A formulation for the relationship between 

the fine and coarse model sensitivities through a nonlinear, frequency-sensitive 

neuromapping has been found, which is a generalization of the lemma found in the work 

by Bakr, Bandler, Georgieva and Madsen (1999). 
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When asymmetric variations in the physical parameters due to tolerances are 

considered, the need of extra EM simulations is avoided by re-using the available 

neuromappings and exploiting the typical asymmetric nature of the coarse models. 

We have also described Neural Inverse Space Mapping (NISM) optimization for 

EM-based design of microwave structures, where the inverse of the mapping is explicitly 

used for the first time in a space mapping algorithm. 

NISM optimization does not require up-front EM simulations to start building the 

mapping.  A simple statistical procedure overcomes the existence of poor local minima 

during parameter extraction, avoiding the need of multipoint parameter extraction or 

frequency mapping. 

The inverse of the mapping at each NISM iteration is approximated by a neural 

network whose generalization performance is controlled through a network growing 

strategy.  We have found that for many practical microwave problems, a simple linear 

inverse mapping, i.e., a 2-layer perceptron, is sufficient to reach a practically optimal fine 

model response. 

NISM step is calculated by simply evaluating the current neural network at the 

optimal coarse solution.  We proof that this step is equivalent to a quasi-Newton step 

while the inverse mapping remains essentially linear, and gradually departs from a quasi-

Newton step as the amount of nonlinearity in the inverse mapping increases. 

In the examples considered we found that NISM optimization exhibits superior 

performance than NSM optimization, as well as than the Trust Region Aggressive Space 

Mapping exploiting Surrogates, developed by Bakr, Bandler, Madsen, Rayas-Sánchez 

and Søndergaard (2000). 

From the experience and knowledge gained in the course of this work the author 
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is convinced that the following research topics should be addressed for further 

development: 

(1) The neural space mapping methods for modeling and design considered in this 

thesis are formulated in the frequency domain.  When frequency-independent 

neuromappings are sufficient, either for SM-based neuromodeling or for NSM 

optimization, these methods can be in principle applied to the time domain.  That 

is also the case for NISM optimization.  Further work is needed to demonstrate 

this with specific examples.  Nevertheless, if a frequency-sensitive neuromapping 

is needed, further research has to be done for the expansion of these methods to 

the time domain, especially for transient responses.  Feedforward 3-layer 

perceptrons are not likely to be suitable under these circunstances: a different 

neural network paradigm might be needed for the neuromapping.  The use of 

recurrent neural networks is suggested (see the work by Fang, Yagoub, Wang 

and Zhang, 2000). 

(2) The SM-based neuromodels were tested by comparing their responses with the 

corresponding EM responses in the frequency domain.  Excellent agreement was 

observed.  Nevertheless, further research is needed to analyze the passivity 

preservation of the SM-based neuromodels, especially if they are to be developed 

for transient simulation.  The loss of passivity can be a serious problem because 

passive components inserted in a more complex network may cause the overall 

network to be unstable (see the work by Dounavis, Nakhla and Achar, 1999). 

(3) All the microwave examples considered in this thesis, for both modeling and 

optimization, are electrically linear.  Further work should be realized to apply 

these neural space mapping methods to nonlinear microwave circuits.  A good 
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candidate to start with is the NISM optimization of a microwave power amplifier, 

for example. 

(4) The practical microwave examples designed in this thesis using neural inverse 

space mapping (NISM) optimization showed that a simple linear inverse 

mapping can be enough to arrive at an optimal EM response.  This suggests a 

simplification of NISM optimization by keeping the inverse mapping linear at all 

the iterations, and removing from the learning set those points that are far from 

the SM solution when more than n+1 iterations are accumulated. 

(5) Related to the previous point, an interesting comparison can be realized between 

linear inverse space mapping and aggressive space mapping (ASM) using 

Broyden’s update.  In order to make a fair comparison, both algorithms should 

use the same parameter extraction procedure.  A good candidate would be the 

statistical parameter extraction algorithm described in Chapter 5.  From this 

comparison new light will emerge to increase understanding of the SM-based 

optimization algorithms. 
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Appendix A 

Implementation of SM-based 
Neuromodels using NeuroModeler 

 

Alternative realizations of SM based neuromodels of practical passive 

components using commercial software are described in this appendix.  An SM-based 

neuromodel of a microstrip right angle bend is developed using NeuroModeler (1999), 

and entered into HP ADS (1999) as a library component through an ADS plug-in module. 

The physical structure of this microwave component, the characteristics of the 

coarse and fine models used, the region of interest for modeling, and the training and 

testing sets, are described in Section 2.6.1. 

Fig. A.1 illustrates the frequency space-mapped neuromodeling (FSMN) strategy 

for the microstrip right angle bend, which was implemented using NeuroModeler as 

shown in Fig. A.2. 

The FSMN model of the microstrip bend as implemented in NeuroModeler 

consists of a total of 6 layers (see Fig. A.2). The first layer, from bottom to top, has the 

input parameters of the neuromapping (W, H, εr, and freq), which are scaled to ±1 to 

improve the numerical behavior during training. 

The second layer from bottom to top corresponds to the hidden layer of the ANN 

implementing the mapping (see Fig. 4b): optimal generalization performance is achieved 
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with 8 hidden neurons with sigmoid non-linearities. 

The third layer is linear and contains the coarse design parameters xc and the 

cx
fc RR ≈

ANN

fx fR
Sonnet's
em

lumped
circuit

Gupta's model

formulas
L,Cωc

ω

 
Fig. A.1 Strategy for the frequency space-mapped neuromodel (FSMN) of the microstrip 

right angle bend. 
 
 

 
Fig. A.2 FSMN of the microstrip right angle bend as implemented in Neuromodeler. 
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mapped frequency ωc before de-scaling.  The fourth layer is added to simply de-scale the 

parameters. 

Gupta’s formulas to calculate L and C are programmed as the internal analytical 

functions of the fifth hidden layer, using the built-in MultiSymbolicFixed function.  

Finally, the output layer, at the top, contains a simple internal circuit simulator that 

computes the real and imaginary parts of S11 and S21 for the lumped LC equivalent circuit. 

This layer uses the built-in CktSimulatorPS function available in NeuroModeler. 

Fig. A.3 shows the learning errors and Fig. A.4 the testing errors of the FSMN 

bend model after training using NeuroModeler.  Conjugate Gradient and Quasi Newton 

built-in training methods are used.  The average and worst case learning errors are 0.43% 

and 1.00%, while the average and worst-case testing errors are 1.04% and 10.94%.  

Excellent generalization performance is achieved.  Plots in Fig. A.3 and Fig. A.4 were 

produced using the export-to-MatLab capability available in Neuromodeler. 

The FSMN model of the right angle bend can now be used in HP ADS for fast 

and accurate simulations within the region of operation shown in Table 2.1: it can be 

entered as a user-defined model through the plug-in module NeuroADS available in 

Neuromodeler.  The use of Neuromodeler for implementing SM-based neuromodels was 

first proposed by Bandler, Rayas-Sánchez, Wang and Zhang (2000). 
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(b) 

Fig. A.3 Errors in the learning set of the FSMN model after training: (a) histogram of 
learning errors, (b) correlation to learning data. 
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(b) 

Fig. A.4 Errors in the testing set of the FSMN model after training: (a) histogram of 
testing errors, (b) correlation to testing data. 
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Appendix B 

Jacobian of the Inverse Mapping 

 

In this appendix we prove that JN = JP−1.  Let xc = P(xf), with P : ℜn → ℜn, and xf  

= N(xc) its inverse function.  Using P(xf), we can write the system of equations 
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Substituting (B-2)-(B-4) in (B-1) 

fPc dxJdx =  (B-5) 

Similarly, using N(xc) we obtain 

cNf dxJdx =  (B-6) 

where 
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(B-7) 

Comparing (B-5) and (B-6) we conclude that JN = JP−1.  Notice that when xf  and 

xc have different dimensionality, JN is the pseudoinverse of JP. 
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