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Power  
in Simplicity  

with ASM

T
he most widely used space mapping ap-
proach to efficient design optimization is 
the aggressive space mapping (ASM) algo-
rithm. My purpose here is to present both 
a historical account and a technical reas-

sessment of ASM, starting with the invention of the 
space mapping concept and continuing with a brief 
overview of the most fundamental space mapping 
optimization methods developed until now, within 
which ASM is framed. The article goes on to review 
over two decades of ASM evolution, in terms not only 
of the theoretical contributions directly incorporated 
into the ASM algorithm but also of the most significant 
engineering applications documented for ASM to date. 

Clearly, ASM is neither the most powerful nor the 
most advanced space mapping design optimization 
approach invented up to now. However, the historical 
evidence proves that it is the most widely adopted space 
mapping optimization method, both in academia and 
industry. I believe that two main characteristics account 
for ASM’s popularity: 1) it is simple, and 2) it is very effi-
cient (when it works, it works extremely well). For these 
reasons, in this article I also revisit the ASM algorithm, 
emphasizing key steps for its successful implementation, 
as well as typical scenarios where ASM may fail. Finally, 
I venture some future directions regarding ASM.
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An Overview of Space Mapping-Based  
Optimization Methods
Prof. John Bandler invented the space mapping technique 
in 1994 [1]. A fine description about how it was origi-
nated—along with intriguing analogies to human cogni-
tion and a qualitative illustration of the multiple faces of 
space mapping —was presented by its inventor in 2013 
[2]. Excellent technical reviews on general space map-
ping methods for modeling and design optimization are 
found in [3] and [4], from 2004 and 2008, respectively. The 
most recent specific review of space mapping-based opti-
mization exploiting artificial neural networks appeared 
in 2004 [5]. This suggests that an up-to-date review of 

general space mapping tech-
nologies seems particularly 
pertinent now.

In spite of that, my aim in 
this article is not to provide a 
general review of space map-
ping but rather to focus on 
the ASM approach to design 
optimization. Nevertheless, 
to place the ASM algorithm 
into its proper context, Fig-
ure 1 briefly illustrates, in a 
schematic manner, the most 
fundamental design opti-
mization algorithms to have 
emerged from the space 
mapping concept.

Space mapping optimi-
zation methods belong to 
the general class of surro-
gate-based optimization 
algorithms [45]. They are 
specialized for the efficient 
optimization of computa-
tionally expensive objective 
functions.

ASM emerged in 1995, 
two decades ago. Since then, 
many other design optimi-
zation algorithms have been 
proposed, as seen in Figure 1.  
They aim at making space 
mapping optimization more 
general, more robust, and 

more efficient. Excepting, perhaps, implicit space map-
ping [16], most of them have a significantly higher com-
plexity than ASM does, making them more difficult 
to exploit by nonoptimization experts. Any diligent 
(or even quick) search of IEEE Xplore and other recog-
nized digital libraries can confirm that the number of 
applications using more sophisticated space mapping 

design optimization methods is significantly smaller 
than the number using ASM.

The Evolution of ASM Theory  
and Applications
The most significant theoretical contributions to ASM, 
as well as its main publicly documented applications 
in engineering fields, are highlighted in Figures 2 and 
3, which also show both the fine and coarse models 
used for each application case (for a discussion of the 
fine and coarse models, see “The Beauty of ASM: Sim-
plicity” section).

More detailed descriptions of these advances are 
summarized in Tables 1 and 2, in which correspond-
ing references are also provided. A number of inter-
esting observations about ASM can be inferred from 
these two tables.

 • The diversity of engineering disciplines in which 
ASM is applied. ASM has been applied not only 
to electromagnetics-based design optimization of 
RF and microwave circuits, for which it was orig-
inally intended, but also to several other areas, 
including magnetic circuits, mechanical engi-
neering, materials design, medical instrumenta-
tion, environmental sciences, and so forth.

 • The diversity of computer-aided design (CAD) tools 
employed. Models of the optimized structures 
have been implemented using a variety of numer-
ical simulators, including commercially avail-
able CAD tools and internal tools. Physical data 
obtained from direct measurements have also 
been incorporated as fine models.

 • The diversity of ASM contributors. A very signifi-
cant number of theoretical contributions and 
applications have been made from researchers 
well beyond the originating group at Ontario’s 
McMaster University—especially for the second 
decade of ASM evolution.

 • A stable production of applications. There has been 
a quite steady generation of engineering applica-
tions for ASM, spanning over two decades—with 
no signs of a proximate end to the development 
of new applications.

The Beauty of ASM: Simplicity
ASM efficiently finds an approximation for the opti-
mal design of a computationally expensive model 
(termed a “fine” model) by exploiting a fast but inac-
curate surrogate of the original fine model (termed 
a “coarse” model). It starts with a coarse model 
optimal design whose coarse-model response satis-
fies the design specifications and provides a target, 
or desired, response for the fine model. ASM aims 
at finding a solution that makes the fine-model 
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response close enough, from an engineering per-
spective, to the desired response. ASM is naturally 
rooted in engineering design practice.

Finding the actual fine-model optimal design x f
)  

could be realized by minimizing, with respect to the 
fine-model design parameters ,x f  a suitable objective 
function U  that encodes the design specifications in 
terms of the fine model response ,R f  by solving

( ( )) .x R xarg min U
x ff f

f
=)

However, the above optimization problem is not 
feasible in most practical cases given the high com-
putational cost implied by each evaluation of the fine-
model response. ASM does not aim at finding .x f

)  
Instead, ASM aims at finding a solution ,xSM

f  called 
the space-mapped solution, that makes the fine-model 
response close enough to the optimal coarse-model 
response, .RR xSM

f f c. )^ h

ASM Flow Diagram
Figure 4 shows a flow diagram for the ASM algorithm. 
It starts by finding the optimal coarse-model design 
xc
)  that yields the target response, .R x Rc c c= ))^ h  This 

is typically accomplished by directly optimizing the 
coarse model using classical optimization methods, as 
in the case of Figure 4. However, analytical procedures 
can also be applied to find xc

)  using classical engineer-
ing design methods on idealized (coarse) models, e.g., 
classical filter-synthesis procedures.

After obtaining ,xc
)  the initial guess of the Broyden 

matrix B is defined, and the fine-model design param-

eters x f  are initialized. The 
Broyden matrix B linearly 
approximates the relation-
ship between both param-
eters spaces, xc  and ,x f  as 
explained in the sections that 
follow. Using the initial ,x f  
the corresponding fine-model 
response R f  is calculated at 
that point. Next, the stopping 
criteria are tested. If they are 
fulfilled, the algorithm ends; 
otherwise, it continues by per-
forming parameter extraction 
(PE), which consists of find-
ing the coarse-model design 
that renders the coarse-model 
response as closely as pos-
sible to the current fine-model 
response.

The difference f  between 
the extracted parameters and 
the optimal coarse-model 
design is then calculated. Next, 

a linear system is solved to calculate the step h. The Broy-
den matrix is updated, and the next iterate is calculated, 
at which a new fine-model evaluation is realized and the 
algorithm proceeds.

Initializing the Broyden Matrix  
and the Fine-Model Design Parameters
When the design parameters in both models, xc  and 

,x f  have the same nature (for instance, both contain the 
same geometrical dimensions), B should be initialized by 
the identity matrix, based on the reasonable and implicit 
assumption that the coarse model does not deviate too 
much from the fine model. However, if xc  and x f  have 
different natures (for instance, xc  contains lumped-circuit 
element values while x f  contains geometrical dimen-
sions), then B can be initialized by estimating the Jacobian 
of xc  with respect to x f  by finite differences [62], [79].

Similarly, if both xc  and x f  have the same nature, 
the fine-model design parameters are initialized with 
the optimal coarse-model solution, ;x xf c= )  otherwise, 
they are initialized as .x B xf c

1= )-

Parameter Extraction
The PE process is the weakest part of ASM. It is usually 
formulated as an optimization subproblem that aims 
at minimizing the differences between coarse- and 
fine-model responses at the thi-  iteration (local align-
ment) by solving

( ) .x R x R xarg min
xc f f c c

i i

c
= -`^ ^ jh h

This optimization subproblem may present multiple 
local minima, some of them yielding a good match 

Figure 1. Fundamental design optimization methods that have emerged from the space 
mapping (SM) concept: ASM [6], [7]; hybrid ASM [8], [9]; neural SM [10]–[12]; implicit SM 
[13]–[17]; neural inverse SM [18], [19]; output SM [20], [21]; linear inverse SM [22]–[24]; 
manifold mapping [25]–[28]; aggressive output SM [29], [30]; adaptive response correction 
(ARC) [31], [32]; shape-preserving response prediction (SPRP) [33], [34]; SM with adjoint 
sensitivities [35]–[37]; SPRP exploiting SM [38]; SPRP using adjoint sensitivities [39], [40]; 
and response features [41]–[44] (which emerged from ARC and SPRP).
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(several coarse-model designs that are able to approxi-
mate, with acceptable accuracy, the current fine-model 
response). Non-uniqueness of the PE solution may lead 
to oscillations or even divergence in the ASM algo-
rithm [48], [49]. Several successful strategies have been 
proposed to overcome this difficulty [3].

When the coarse model consists of an equivalent cir-
cuit model, some physics-based analytical approximation, 
or some metamodel (response-surface model, polyno-

mial model, neural network model, etc.), then solving 
the PE optimization subproblem is computationally very 
inexpensive. However, if the coarse model consists of a 
coarsely discretized full-wave electromagnetic model, 
its computational cost becomes non-negligible and may 
exhibit numerical noise and discontinuous behavior [98].

Another interesting approach to performing PE 
consists of completely avoiding the previously dis-
cussed optimization subproblem (and its inherent 
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Figure 2. The first decade of ASM evolution. Shown are the key theoretical elements that have contributed to developing 
ASM and the main applications for design optimization that use ASM, indicating both the fine and coarse models employed. 
PE: parameter extraction; HTS: high-temperature superconductor; DFS: double-folded stub; HFSS: high frequency structural 
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difficulties) by following a synthesis approach, i.e., 
by finding in closed form the coarse-model (physics-
based) parameter values that synthesize the current 
fine-model response, as in [79], [90].

The Root of ASM: Finding Roots
The PE problem described in the previous section 
can be interpreted as a multidimensional vector 

function P  representing the mapping between both 
design parameter spaces, .x P xc

i
f
i

= `^ ^ jh h  If the current 
extracted parameters xc

i^ h  correspond approximately 
to ,xc

)  then the current fine-model response approxi-
mates the desired response, .R x Rf f c

i
. )` ^ jh  From here, 

we can see that the ASM algorithm (see Figure 4) itera-
tively finds a solution to the following system of non-
linear equations,

Figure 3. The second decade of ASM evolution. TRASM: trust-region ASM; SRR: split-ring resonator; CSRR: 
complementary SRR; SIR; stepped-impedance resonator.
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TAble 1. A historical account of ASM: The first decade.

Year Reference Theoretical Contributions to ASM ASM Applications Fine Model Coarse Model

1995 [6], [7] Invention of ASM algorithm. Huber norm for 
parameter extraction (PE). Linear frequency 
mapping with exact penalty functions for 
severe model misalignment. 

High temperature 
superconductive (HTS)
microstrip filter

Sonnet Equivalent circuit 
in OSA90

1996 [46] Multipoint PE to increase uniqueness of PE 
solution and to improve ASM convergence.

Waveguide transformers HFSS Empirical model

1997 [47], [48] Statistical approach to PE involving 
penalty concepts for PE uniqueness and 
consistency.

H-plane resonator waveguide 
filters with rounded corners

Maxwell 
Eminence 
(Ansoft)

Mode-matching/
equivalent circuit

1997 [49] Structural decomposition to build accurate 
coarse model combining EM models with 
a coarse grid and empirical models for 
noncritical substructures.

Microstrip interdigital filter Sonnet Sonnet with 
coarse grid/
equivalent circuit

1998 [50], [51] Trust-region ASM with multipoint PE. 
Nonconventional quasi-Newton step with 
an empirical parameter to ensure next 
candidate is within trust region.

Microstrip double-folded stub 
filter

Sonnet Sonnet with 
coarse grid

1999 [8], [9] Trust-region ASM combined with direct 
optimization. Lemma to calculate the fine 
model response Jacobian as a function of 
the coarse model response Jacobian and 
the Broyden matrix.

Waveguide transformer; 
microstrip double-folded stub 
filter

High-
frequency 
structural 
simulator 
(HFSS)

Equivalent circuit 
in OSA90

2000 [52], [53] New surrogate: combination of a mapped 
coarse model with a linearized fine 
model. Next iterate accepted if it improves 
objective function; otherwise, surrogate is 
enhanced by additional fine data.

HTS filter; two-section 
impedance transformer; 
double-folded stub filter

Sonnet Equivalent circuit 
in OSA90

2000 [54] Sampling algorithm to minimize the number 
and automate the selection of fine model 
frequency points for ASM.

Low-pass compact rectangular 
waveguide filter with 
capacitive step discontinuities

EM 
frequency-
domain 
code

Equivalent circuit

2001 [55] Evolutionary optimization method to 
perform PE (to extract global optimum at 
each ASM iteration).

Magnet model with air gap; 
interior permanent magnet 
motor

Finite-
element 
method 
(FEM) tool

Magnetic 
equivalent circuit

2002 [56], [57] Partial space mapping exploiting fine model 
exact sensitivities in PE and mapping 
update.

Bandstop microstrip filter 
with open stubs; two-section 
impedance transformer

Sonnet Equivalent circuit 
in OSA90

2003 [58], [59] Geometrical segmentation to decrease 
design variables. Combination of 
optimization methods for coarse model 
optimization and for PE.

Tunable H-plane waveguide 
filters with tuning posts 
operating at 11 and 13 GHz.

Method of 
moments 
(MoM)

MoM with small 
number of modes

2004 [60], [61] Dynamic coarse model: a combination of 
an evolutionary equivalent-circuit model 
and quasi-static EM partial-element 
equivalent circuit (PEEC) model (highly 
accurate coarse model).

Low temperature co-fired 
ceramic (LTCC) frequency-
selective passive modules: 
LTCC diplexer; low-pass and 
bandpass LTCC filters.

HFSS and 
IE3D

Equivalent-circuit 
and PEEC model

(continued)
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TAble 1. A historical account of ASM: The first decade.

Year Reference Theoretical Contributions to ASM ASM Applications Fine Model Coarse Model

2004 [62] Coarse and fine design parameters of 
different nature (coupling coefficients 
versus geometrical dimensions). Broyden 
matrix initialized by finite differences.

Double-terminated five-pole 
dielectric resonator filter; 
ten-channel manifold-coupled 
output multiplexer

Ansoft HFSS ComDev internal 
circuit analysis 
tool

2004 [63] — Four port electromechanical 
coaxial T-switch in the C- and 
Ku-bands

HFSS Microwave Office

2004 [64] Response-surface methodologies (RSMs) 
to develop coarse models for ASM design 
optimization.

Automobile structure 
optimized (crashworthiness 
and intrusion in the passenger 
compartment)

Large 
industrial 
FEM model

RSM model

2004 [21], [65] — ADS schematic for ASM: 
microstrip transformer; 
H-plane waveguide filter; 
interdigital microstrip filter

HFSS and 
Momentum

Equivalent circuit 
in ADS

2005 [66] ASM with multiple models of increasing 
accuracy: coarse model is the fastest, while 
the finest model is used in the last iteration 
(gradual mapping to avoid divergence).

Six-pole H-plane coupled 
cavities filter with rounded 
corners in the coupling 
windows due to die casting 
fabrication

MoM 
combined 
with modal 
techniques

Modal techniques

2005 [67] — C-band cross-coupled 
bandpass microstrip filter 
using square open-loop 
resonators.

full-wave 
EM model

Coarsely 
discretized EM 
model

TAble 2. A historical account of ASM: The second decade.

Year Reference Theoretical Contributions to ASM ASM Applications Fine Model Coarse Model

2006 [68] Trust-region ASM combined with direct 
optimization; similar to [8], [9].

Reconstruction of magnetic 
proper-ties of steel sheets by 
needle probe

FEM model Semi-analytical 
model

2006 [69], [70] Heuristically constrained ASM: if next 
candidate falls outside predefined limits, 
step size is decreased in same quasi-
Newton direction (using empirical shrinking 
factor).

Microstrip notch filter with 
mitered bends.

Sonnet Equivalent circuit 
in APLAC

2007 [71] Multistage ASM to address manufacturing 
limitations in metamaterial structure. 
Heuristic constraints used as in [70].

Left-handed coplanar 
waveguide filters based on 
split-ring resonators (SRRs)

EM simulator 
Ansoft 
Designer

Equivalent circuit 
in Qucs

2007 [72]–[74] — Microstrip and stripline low-
pass filters; microstrip and 
stripline power dividers

IE3D Field-based 
equivalent circuit

2008 [75] — Localization of electric current 
sources within the brain from 
electroencephalograms

Finite-
difference 
time-domain 
head model

Analytical head 
model

(continued)

(continued)
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TAble 2. A historical account of ASM: The second decade.

Year Reference Theoretical Contributions to ASM ASM Applications Fine Model Coarse Model

2010 [76] Approximation of the Jacobian matrix by 
perturbations, combined with Broyden 
update.

Microstrip patch antenna Fine-mesh 
FEM model

Coarse-mesh FEM 
model

2010 [77]–[80] PE in closed form using analytical 
design formulas. Coarse and fine design 
parameters of different nature (lumped 
elements versus geometrical dimensions). 

Resonant-type metamaterial 
transmission lines: 
microstrip lines loaded with 
complementary SSRs (CSRRs)

Ansoft 
Designer, 
Agilent 
Momentum

Lumped circuit and 
analytical formulas

2012 [81] — Marine ecosystem model to 
calculate global carbon cycle 
(oceanic CO2 uptake)

Physical data Coarse time 
discretization 
numerical model

2012 [82] Additional stopping criterion for ASM: error 
between target response and fine model 
response (already used in [12]).

Stepped-impedance 
microstrip low-pass filter

Ansoft HFSS Equivalent circuit 
in ADS

2012 [83] — Two-pole coaxial dielectric 
resonator filter

Ansoft HFSS Equivalent circuit 
in ADS

2013 [84] — Five-pole H-plane direct-
coupled-cavity waveguide 
bandpass filter with rounded 
corners for space applications 
in the C-band

Method of 
Moments 
& Mode 
Matching

Equivalent circuit & 
Mode Matching

2013 [85], [86] Two-stage ASM: 1) pre-optimization 
to determine a convergence region for 
implementable equivalent circuits; and  
2) conventional ASM.

Stopband microstrip filters by 
cascading CSRR-loaded line 
unit cells; dual-band CSRR-
based power divider

EM simulator 
Ansoft 
Designer

Equivalent circuit

2013 [87] — Fabricated prototype of a 
single-ended high-speed 
package interconnect

COMSOL Simplified and 
coarsely meshed 
COMSOL

2013 [88] — Synthesis of stepped 
impedance resonators (SIRs); 
fabricated third-order elliptic 
microstrip low-pass filter

Full-wave 
EM model

Equivalent circuit

2014 [89]–[91] Two-stage ASM: 1) pre-optimization to 
determine suitable design specs from 
lumped circuit; 2) conventional ASM. PE in 
closed form using design formulas in terms 
of characteristic responses.

Synthesis of SIRs, shunt 
stubs, and open CSRRs in 
individual cells; wide-band 
bandpass filters by cascading 
individual cells (negligible EM 
interaction)

Agilent 
Momentum

Equivalent circuit

2014 [92] — Parallel coupled lines 
bandpass microstrip filter

HFSS Equivalent circuit 
in ADS

2014 [93]–[94] — Circular-waveguide dual-
mode filters with fixed square 
insertions (avoiding tuning 
screws)

physical data 
(VNA)

FEST3D

2015 [95] — Five-pole microstrip hairpin 
filter using a reflected group 
delay objective function

Sonnet Equivalent circuit 
in ADS

(continued)
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,f x P x xf f c= - )^ ^h h

because any root xSM
f  of this system of equations 

f x f^ h implies that R x RSM
f f c, )^ h  [either 

or ,R x R R x RSM SM
f f c f f c.= ) )^ ^h h  the latter case resulting 

from a possible residual in matching the responses 
during PE]. 

Therefore, ASM is essentially equivalent to the clas-
sical Broyden method for solving systems of nonlin-
ear equations [99], also known as the method of secants. 
ASM makes a linear approximation of f x f^ h at each 
iteration. It iteratively approximates the Jacobian of the 
mapping function P  by matrix B  using the Broyden 
rank-one updating formula (see Figure 4), where each 
evaluation of the system f x f^ h implies at least one 
fine-model simulation and the next iterate is predicted 
from a quasi-Newton step. It has been shown [100] that 
ASM is not expected to yield the exact fine-model opti-
mum ,x f

)  but rather a space-mapped solution ,xSM
f  the 

accuracy of which is usually sufficient from a practical 
engineering perspective.

A typical evolution of ASM from the perspective 
of the system of nonlinear equations associated to the 
mapping function is illustrated in Figure 5, where the 
Broyden matrix is initialized with the identity (for pur-
poses of simplicity, a one-dimensional design optimi-
zation problem is considered). In this illustration, it is 
assumed that the initial design is very bad (or a very 
deviated coarse model), implying a very large value of 

.f x f
0` ^ jh  In spite of that, ASM converges very quickly 

to a space-mapped solution .xSM
f

The plots in Figure 5 also provide some insight 
regarding the famous efficiency of ASM, by which many 
highly complex problems are frequently solved in just a 
few fine-model evaluations, regardless of the number of 
optimization variables—even in cases were the initial 
fine-model response R xf c

)^ h is very much deviated from 
the target response .Rc

)  As can be seen in Figure 5, the 
efficiency of ASM depends on the degree of nonlinearity 
of ,f x f^ h  which, in turns, depends on the degree of non-
linearity of the mapping P  between both model param-
eter spaces. If the mapping is relatively linear (perhaps 
with a large offset), ASM solves the design problem in a 
few iterations, regardless of the problem’s dimensionality 
and even when the initial fine-model response is signifi-
cantly deviated from the target, as in [97].

It is clear then, assuming the PE process is correctly 
implemented, that ASM can face the four scenarios 
depicted in Figure 6 (again, to simplify matters, a one-
dimensional design problem is assumed):

1) A unique and exact solution exists for the space mapping 
problem. ASM finds a fine-model design whose 
response matches, either exactly or approximately, 
the desired response. This scenario may occur 
in practice, usually when the desired response is 
only approximated by a fine-model response at a 
unique space-mapped solution. 

2) Several exact solutions exist. This is a theoretically 
possible, but infrequent scenario in practice. It 
implies that several fine-model designs are able 
to match the optimal coarse-model response. 
ASM would find only one of those space-mapped 
solutions, depending on the starting point.

3) An acceptable solution exists. This is the most com-
mon scenario found in practice for successful 
ASM design optimizations. Of course, a closely Figure 4. Flow diagram of the ASM algorithm [6], [7].

Stopping Criteria

No

Yes
End

Initialize xf

Evaluate Fine Model
Rf(xf)
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Optimize Coarse Model
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* = arg min U(Rc(xc)) 
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Rc(xc) . Rf(xf)
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xf =  xf +  h

f =  xc -  xc
*

B =  B +  fh
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TAble 2. A historical account of ASM: The second decade.

Year Reference Theoretical Contributions to ASM ASM Applications Fine Model Coarse Model

2015 [96] — Synthesis of slow-wave 
structures based on microstrip 
lines with patch capacitors

Agilent 
Momentum

Equivalent circuit

2015 [97] — Handset antennas considering 
EM effects of mobile phone 
components and human head

HFSS Simplified 
HFSS-ignoring 
environment

(continued)
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related scenario can happen when several accept-
able solutions exist (though this is less likely 
to happen).

4) There is no acceptable space-mapped solution. In this 
scenario, ASM fails. It occurs when the coarse 
model is too inaccurate with respect to the 
fine model.

At the end of a successful ASM algorithm, we 
have not only a fine-model design whose correspond-
ing response approximates the desired response, 

,R x RSM
f f c. )^ h  but also a fast linear input-mapped 

coarse model that makes a good approximation of 
the fine model around the space-mapped solution, 
R P x R xc f ff.^ ^ ^hh h for x f  around .xSM

f  This final 
linear mapping is given by ,P x Bx cf f= +^ h  with 
c x BxSM

c f= -)  and B  as the final Broyden matrix  
(see Figure 4).

Stopping Criteria
Because ASM aims at finding the roots of ,f x f^ h  the 
most natural and widely used stopping criterion is 
when the maximum absolute error in the solution of 
the system of nonlinear equations is small enough. 
However, it has been found in practice that, by incor-
porating other criteria, ASM performance can be sig-
nificantly enhanced [12], [82]. Appropriate additional 
stopping criteria include three other possibilities: 
when the maximum relative error in the fine-model 
response with respect to the target response is small 
enough; when the relative change in the fine-model 

design parameters is small enough; or when a maxi-
mum number of iterations is reached. 

In summary, these four criteria for finalizing ASM 
at the i-th iteration can be implemented as follows:

,

x

R R

x x

f

x x R x

x

i i

<

>

f

f c

f f

max

i

i

i i i

f c c c

f

1

2 2

1
2 3 3 2

0

0

0

g

g

g

#

#

f

f f

f f

- +

- +

) )

3

3 3

+

` ^
`
^ ^

`
^

^ ^

^

^

j h
j
h h

j
h

h h

h

h

where , , and1 2 3f f f  are arbitrary small positive sca-
lars. Because ASM is normally very efficient, a suit-
able maximum number of iterations, ,imax  to stop 
ASM is or ,n n3 4  where n  is the total number of 
design variables. Exceeding that amount of iterations 
is typically a sign of anomalous ASM behavior, most 
probably caused by an inadequate PE process or by a 
too coarse model.

Figure 5. A typical evolution of ASM, assuming a 
one-dimensional design optimization problem and a very 
bad initial design. (a) The initial fine-model response is 
calculated, with the first extracted parameters being very 
different from ;xc

)  (b) a Broyden matrix is initialized with 
the identity and first iterate predicted; (c) the Broyden 
matrix is updated with formulae, and the next iterate is 
calculated; (d) when the Broyden matrix is updated, the 
next iterate is practically a root (the extracted parameters 
are practically equal to xc

) ).
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Figure 6. Four ASM scenarios, all assuming a one-
dimensional design optimization problem: (a) a unique 
and exact space-mapped solution exists; (b) several exact 
space-mapped solutions exist; (c) an acceptable space-
mapped solution exists; and (d) no acceptable space-
mapped solution exists due to a coarse model that is too 
inaccurate. The desired response is denoted as ,Rc

)  which is 
equal to the coarse-model response at the optimal coarse-
model design, .R xc c

)^ h  (The symbol “b” denotes “equal or 
approximately equal.”)

There is a trend toward the 
development of fully automated CAD 
tools, based on ASM, for efficient 
and accurate synthesis and design 
optimization algorithms dedicated 
to particular structures in specific 
technologies.
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Final Remarks and Future Directions for ASM
In the context of all the space mapping-based design 
optimization approaches described in the opening 
section and considering the essential characteristics of 
ASM as subsequently described here, a more technical 
name for this space mapping design technique would 
be a Broyden-based input space mapping algorithm.

Looking in more detail at the most recent applica-
tions of ASM listed in Table 2, it seems that there is a 
trend toward the development of fully automated CAD 
tools, based on ASM, for efficient and accurate synthesis 
and design optimization algorithms dedicated to par-
ticular structures in specific technologies. This trend 
might lead to the future incorporation into industrial 
CAD tools of ASM-based built-in design functions. 

As time goes by, perhaps some of the most recent 
and advanced space mapping-like optimization 
approaches, indicated in Figure 1, will prove to be as 
popular as the ASM algorithm has been so far.
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