CONSTRAINED OPTIMIZATION

GRAPHICAL EXAMPLES OF UNCONSTRAINED AND CONSTRAINED OPTIMIZATION PROBLEMS

1. Maximizing Power Transfer in a Simple AC Circuit – Unconstrained Problem

Consider the following AC circuit. Assuming that $R_S = 50 \Omega$, $L_S = 5 \text{ nH}$, $v_s = (1\text{V})\sin 2\pi ft$, with f = 1GHz, we want to find the optimal values of R_L and C_L that maximize the power delivered to the load.

From basic circuit theory we know that this problem has a closed form solution. The power delivered to the load is maximum when $Z_S = Z_L^*$ (load impedance equal to the complex conjugate of the source impedance). Using this fact, the optimal values of R_L and C_L at 1GHz are

 R_L optimum = 69.7392 Ω C_L optimum = 1.4339 pF

For which the corresponding impedances are

$$Z_S = 50 + j31.4159 \ \Omega$$

 $Z_L = 50 - j31.4159 \ \Omega$

and the average real power delivered to the load is

$$P_{L\text{max}} = 2.5 \text{ mW}$$

The corresponding optimization problem is $\mathbf{x}^* = \arg \min_{\mathbf{x}} u(\mathbf{x})$. The optimization variables are $\mathbf{x} = [R_L \quad C_L]^T$. Since we want to maximize the power at the load, $u(\mathbf{x}) = -P_L$, where $P_L = \frac{1}{2} \operatorname{Re} \{V_L I_L^*\}$ and $V_L(\mathbf{x}) = I_L Z_L$, $I_L(\mathbf{x}) = \frac{V_S}{Z_S + Z_L}$, $Z_S = R_S + j2\pi f L_S$, $Z_L = \frac{R_L}{1 + j2\pi f R_L C_L}$.

It is seen that the graphical solution of the optimization problem agrees with the theoretical solution.

2. Maximizing Power Transfer in a Simple AC Circuit - Adding Box Constraints

Let us assume that we want to solve the same problem but now considering a maximum load capacitance $C_{Lmax} = 1$ pF. The new optimization problem is

We can remove the box constraints through variable transformations, as follows,

$$z^* = \arg\min_{z} u(z)$$
 where $u(z) = u(x)$ with $x_1 = z_1$ and $x_2 = C_{L_{\text{max}}} - z_2^2$.

The contours of the new unconstrained objective are:

Zooming in the graphical solution it is seen that $z^* \approx [68.5\Omega \quad 0]^T$, which corresponds to $x^* \approx [68.5\Omega \quad 1\text{pF}]^T$.

The optimal response at the constrained solution is $P_{Lmax} = 2.4778$ mW.

3. Maximizing Power Transfer in a Simple AC Circuit – Adding Inequality Constraints

Let us assume that we want to solve the same problem but now restricted to a magnitude of the load admittance larger than $25 \text{m}\Omega^{-1}$, that is, $|Y_L| \ge Y_{L\text{min}} = 25 \text{m}\Omega^{-1}$. The new optimization problem is

$$\mathbf{x}^{*} = \arg\min_{\mathbf{x}} u(\mathbf{x})$$
 with $u(\mathbf{x}) = -P_{L}$, $\mathbf{x} = [R_{L} \quad C_{L}]^{T}$, $P_{L} = \frac{1}{2} \operatorname{Re}\{V_{L}I_{L}^{*}\}, V_{L}(\mathbf{x}) = I_{L}Z_{L}$,
subject to
 $g(\mathbf{x}) \le 0$ $I_{L}(\mathbf{x}) = \frac{V_{S}}{Z_{S} + Z_{L}}, Z_{S} = R_{S} + j2\pi f L_{S}, Z_{L}(\mathbf{x}) = \frac{R_{L}}{1 + j2\pi f R_{L}C_{L}}$, and
 $g(\mathbf{x}) = Y_{L\min} - \left|1/Z_{L}(\mathbf{x})\right|, Y_{L\min} = 25 \mathrm{m}\Omega^{-1}.$

Zooming in the graphical solution it is seen that $\mathbf{x}^* \approx [46.1\Omega \quad 1.97 \text{pF}]^{\text{T}}$.

The above problem can be solved as an unconstrained optimization problem using penalty functions. The new objective function is

$$U(\mathbf{x}) = u(\mathbf{x}) + r^{g}(G(\mathbf{x}))^{2} \quad \text{with } u(\mathbf{x}) = -P_{L}, \quad \mathbf{x} = [R_{L} \quad C_{L}]^{T}, \quad P_{L} = \frac{1}{2} \operatorname{Re}\{V_{L}I_{L}^{*}\}, \quad V_{L}(\mathbf{x}) = I_{L}Z_{L},$$
$$I_{L}(\mathbf{x}) = \frac{V_{S}}{Z_{S} + Z_{L}}, \quad Z_{S} = R_{S} + j2\pi f L_{S}, \quad Z_{L}(\mathbf{x}) = \frac{R_{L}}{1 + j2\pi f R_{L}C_{L}}, \text{ and}$$
$$G = \max\{0, g(\mathbf{x})\},$$
$$g(\mathbf{x}) = Y_{L\min} - |1/Z_{L}(\mathbf{x})|,$$
$$Y_{L\min} = 25 \mathrm{m}\Omega^{-1}.$$

The optimal solution found, x^* , depends on the value of the penalty term r^g , as illustrated in the following contours of U(x):

The values used above for the penalty coefficient r^g are too small. This makes that the overall objective function $U(\mathbf{x})$ does not "see" the effects of the inequality constraint $g(\mathbf{x})$.

This problem illustrates how an arbitrary selection of the initial penalty coefficient r^{g} can yield an important amount of unnecessary unconstrained optimizations before we reach the solution.

The effect of selecting a better initial penalty coefficient r^{g} is now illustrated with two starting points.

a) Let us assume that the starting point is $\mathbf{x}_0 \approx [90\Omega \quad 4.5 \text{pF}]^{\text{T}}$ (an interior point). Then $u(\mathbf{x}_0) = -1.5638$, $g(\mathbf{x}_0) = -0.0054$. A better way to choose the initial r^{g} is

$$r_0^{\rm g} = \frac{|u(\boldsymbol{x}_0)|}{\|\boldsymbol{g}(\boldsymbol{x}_0)\|_2^2} = \frac{1.5638}{(0.0054)^2} = 53,628$$

Using $r^{g} = 53,628$

Zooming in the graphical solution it is seen that $\mathbf{x}^* \approx [46.1\Omega \quad 1.97 \text{pF}]^{\text{T}}$.

b) Let us assume that the starting point is $\mathbf{x}_0 \approx [70\Omega \ 1\text{pF}]^T$ (an exterior point). Then $u(\mathbf{x}_0) = -2.2546$, $g(\mathbf{x}_0) = 0.0094$. Recalculating the initial r^{g} ,

 $r_0^{\rm g} = \frac{|u(\boldsymbol{x}_0)|}{\|\boldsymbol{g}(\boldsymbol{x}_0)\|_2^2} = \frac{2.2546}{(0.0094)^2} = 25,516.$

Using $r^{g} = 25,516$

Zooming in the graphical solution it is seen that $\mathbf{x}^* \approx [46.1\Omega \quad 1.97\text{pF}]^{\text{T}}$.