Graphical Examples of Unconstrained and Constrained Optimization Problems

1. Maximizing Power Transfer in a Simple AC Circuit - Unconstrained Problem

Consider the following AC circuit. Assuming that $R_{S}=50 \Omega, L_{S}=5 \mathrm{nH}, v_{s}=(1 \mathrm{~V}) \sin 2 \pi f t$, with $f=1 \mathrm{GHz}$, we want to find the optimal values of R_{L} and C_{L} that maximize the power delivered to the load.

From basic circuit theory we know that this problem has a closed form solution. The power delivered to the load is maximum when $Z_{S}=Z_{L}{ }^{*}$ (load impedance equal to the complex conjugate of the source impedance). Using this fact, the optimal values of R_{L} and C_{L} at 1 GHz are
R_{L} optimum $=69.7392 \Omega$
C_{L} optimum $=1.4339 \mathrm{pF}$
For which the corresponding impedances are

$$
\begin{aligned}
& Z_{S}=50+j 31.4159 \Omega \\
& Z_{L}=50-j 31.4159 \Omega
\end{aligned}
$$

and the average real power delivered to the load is

$$
P_{L \max }=2.5 \mathrm{~mW}
$$

The corresponding optimization problem is $\boldsymbol{x}^{*}=\arg \min _{\boldsymbol{X}} u(\boldsymbol{x})$. The optimization variables are $\boldsymbol{x}=\left[\begin{array}{ll}R_{L} & C_{L}\end{array}\right]^{\mathrm{T}}$. Since we want to maximize the power at the load, $u(\boldsymbol{x})=-P_{L}$, where $P_{L}=\frac{1}{2} \operatorname{Re}\left\{V_{L} I_{L}^{*}\right\}$ and $V_{L}(x)=I_{L} Z_{L}, \quad I_{L}(x)=\frac{V_{S}}{Z_{S}+Z_{L}}, \quad Z_{S}=R_{S}+j 2 \pi f L_{S}, \quad Z_{L}=\frac{R_{L}}{1+j 2 \pi f R_{L} C_{L}}$.

It is seen that the graphical solution of the optimization problem agrees with the theoretical solution.

2. Maximizing Power Transfer in a Simple AC Circuit - Adding Box Constraints

Let us assume that we want to solve the same problem but now considering a maximum load capacitance $C_{L \max }=1 \mathrm{pF}$. The new optimization problem is

$$
\begin{array}{cl}
\boldsymbol{x}^{*}=\arg \min _{\boldsymbol{x}} u(\boldsymbol{x}) & \text { with } u(\boldsymbol{x})=-P_{L}, \quad \boldsymbol{x}=\left[\begin{array}{ll}
R_{L} & C_{L}
\end{array}\right]^{\mathrm{T}}, \quad P_{L}=\frac{1}{2} \operatorname{Re}\left\{V_{L} I_{L}^{*}\right\}, \quad V_{L}(\boldsymbol{x})=I_{L} Z_{L}, \\
\text { subject to } & I_{L}(\boldsymbol{x})=\frac{V_{S}}{Z_{S}+Z_{L}}, \quad Z_{S}=R_{S}+j 2 \pi f L_{S}, \text { and } Z_{L}(\boldsymbol{x})=\frac{R_{L}}{1+j 2 \pi f R_{L} C_{L}} .
\end{array}
$$

Objective Function Contours and Constraint

Zooming in the graphical solution it is seen that $\boldsymbol{x}^{*} \approx\left[\begin{array}{ll}68.5 \Omega & 1 \mathrm{pF}\end{array}\right]^{T}$.

We can remove the box constraints through variable transformations, as follows,

$$
\mathbf{z}^{*}=\arg \min _{\mathbf{z}} u(\mathbf{z}) \quad \text { where } u(\mathbf{z})=u(\mathbf{x}) \text { with } x_{1}=z_{1} \text { and } x_{2}=C_{L \max }-z_{2}^{2} .
$$

The contours of the new unconstrained objective are:

Zooming in the graphical solution it is seen that $\mathbf{z}^{*} \approx\left[\begin{array}{ll}68.5 \Omega & 0\end{array}\right]^{\mathrm{T}}$, which corresponds to $\boldsymbol{x}^{*} \approx\left[\begin{array}{ll}68.5 \Omega & 1 \mathrm{pFF}\end{array}\right]^{\mathrm{T}}$.

The optimal response at the constrained solution is $P_{L \max }=2.4778 \mathrm{~mW}$.

3. Maximizing Power Transfer in a Simple AC Circuit - Adding Inequality Constraints

Let us assume that we want to solve the same problem but now restricted to a magnitude of the load admittance larger than $25 \mathrm{~m} \Omega^{-1}$, that is, $\left|Y_{L}\right| \geq Y_{L \min }=25 \mathrm{~m} \Omega^{-1}$. The new optimization problem is

$$
\begin{array}{cl}
\boldsymbol{x}^{*}=\underset{\boldsymbol{x}}{\arg \min _{\boldsymbol{x}} u(\boldsymbol{x})} & \text { with } u(\boldsymbol{x})=-P_{L}, \quad \boldsymbol{x}=\left[\begin{array}{ll}
R_{L} & C_{L}
\end{array}\right]^{\mathrm{T}}, \quad P_{L}=\frac{1}{2} \operatorname{Re}\left\{V_{L} I_{L}^{*}\right\}, \quad V_{L}(\boldsymbol{x})=I_{L} Z_{L}, \\
\text { subject to } & I_{L}(\boldsymbol{x})=\frac{V_{S}}{Z_{S}+Z_{L}}, \quad Z_{S}=R_{S}+j 2 \pi f L_{S}, Z_{L}(\boldsymbol{x})=\frac{R_{L}}{1+j 2 \pi f R_{L} C_{L}}, \text { and } \\
\boldsymbol{g}(\boldsymbol{x}) \leq 0 & \boldsymbol{g}(\boldsymbol{x})=Y_{L \min }-\left|1 / Z_{L}(\boldsymbol{x})\right|, Y_{L \min }=25 \mathrm{~m} \Omega^{-1} .
\end{array}
$$

Objective Function Contours and Constraints

Zooming in the graphical solution it is seen that $\boldsymbol{x}^{*} \approx\left[\begin{array}{ll}46.1 \Omega & 1.97 \mathrm{pF}\end{array}\right]^{\mathrm{T}}$.

The above problem can be solved as an unconstrained optimization problem using penalty functions. The new objective function is

$$
\begin{array}{ll}
U(x)=u(x)+r^{\mathrm{g}}(G(x))^{2} \quad & \text { with } u(x)=-P_{L}, \quad x=\left[\begin{array}{ll}
R_{L} & C_{L}
\end{array}\right]^{\mathrm{T}}, \quad P_{L}=\frac{1}{2} \operatorname{Re}\left\{V_{L} I_{L}^{*}\right\}, \quad V_{L}(x)=I_{L} Z_{L}, \\
& I_{L}(x)=\frac{V_{S}}{Z_{S}+Z_{L}}, \quad Z_{S}=R_{S}+j 2 \pi f L_{S}, Z_{L}(x)=\frac{R_{L}}{1+j 2 \pi f R_{L} C_{L}}, \text { and } \\
& G=\max \{0, g(x)\}, \\
& g(x)=Y_{L \text { min }}-\left|1 / Z_{L}(x)\right|, \\
& Y_{L \min }=25 \mathrm{~m} \Omega^{-1} .
\end{array}
$$

The optimal solution found, \boldsymbol{x}^{*}, depends on the value of the penalty term r^{g}, as illustrated in the following contours of $U(x)$:
$r^{\mathrm{g}}=1$

$$
r^{g}=100
$$

Objective Function with Penalty Term

$r^{\mathrm{g}}=10$

$r^{\mathrm{g}}=1000$

The values used above for the penalty coefficient r^{g} are too small. This makes that the overall objective function $U(\boldsymbol{x})$ does not "see" the effects of the inequality constraint $g(x)$.

This problem illustrates how an arbitrary selection of the initial penalty coefficient r^{g} can yield an important amount of unnecessary unconstrained optimizations before we reach the solution.

The effect of selecting a better initial penalty coefficient r^{g} is now illustrated with two starting points.
a) Let us assume that the starting point is $\boldsymbol{x}_{0} \approx\left[\begin{array}{ll}90 \Omega & 4.5 \mathrm{pF}\end{array}\right]^{\mathrm{T}}$ (an interior point). Then $u\left(\boldsymbol{x}_{0}\right)=-1.5638$, $g\left(x_{0}\right)=-0.0054$. A better way to choose the initial r^{g} is
$r_{0}^{\mathrm{g}}=\frac{\left|u\left(\boldsymbol{x}_{0}\right)\right|}{\|\left.\boldsymbol{g}\left(\boldsymbol{x}_{0}\right)\right|_{2} ^{2}}=\frac{1.5638}{(0.0054)^{2}}=53,628$
Using $r^{\mathrm{g}}=53,628$
Objective Function with Penalty Term

Zooming in the graphical solution it is seen that $\boldsymbol{x}^{*} \approx\left[\begin{array}{ll}46.1 \Omega & 1.97 \mathrm{pF}\end{array}\right]^{\mathrm{T}}$.
b) Let us assume that the starting point is $\boldsymbol{x}_{0} \approx\left[\begin{array}{ll}70 \Omega & 1 \mathrm{pF}\end{array}\right]^{T}$ (an exterior point). Then $u\left(\boldsymbol{x}_{0}\right)=-2.2546$, $g\left(x_{0}\right)=0.0094$. Recalculating the initial r^{g},

$$
r_{0}^{\mathrm{g}}=\frac{\left|u\left(\boldsymbol{x}_{0}\right)\right|}{\|\left.\boldsymbol{g}\left(\boldsymbol{x}_{0}\right)\right|_{2} ^{2}}=\frac{2.2546}{(0.0094)^{2}}=25,516
$$

Using $r^{\mathrm{g}}=25,516$

Zooming in the graphical solution it is seen that $x^{*} \approx\left[\begin{array}{ll}46.1 \Omega & 1.97 \mathrm{pF}\end{array}\right]^{\mathrm{T}}$.

