Unidimensional Search Methods

Dr. José Ernesto Rayas Sánchez

Outline

- Unidimensional optimization problems
- Well-behaved and badly-behaved functions
- Multimodal and unimodal functions
- Methods for optimizing unimodal functions
- Golden Section method
- Fibonacci method
- Quadratic interpolation method
- Available commands in Matlab

Unidimensional Optimization Problems

- Many multidimensional optimization strategies require one-dimensional techniques to search along some feasible direction at each iteration
- Given $u: \mathfrak{R}^{n} \rightarrow \mathfrak{R}$ and $\boldsymbol{x} \in \mathfrak{R}^{n}$, when solving

$$
\boldsymbol{x}^{*}=\arg \min _{\boldsymbol{X}} u(\boldsymbol{x})
$$

we can select at the i-th iterate \boldsymbol{x}_{i} a search direction \boldsymbol{d}_{i}, and the next iterate \boldsymbol{x}_{i+1} can be found by solving

$$
\alpha^{*}=\arg \min _{\alpha} u\left(\boldsymbol{x}_{i}+\alpha \boldsymbol{d}_{i}\right)=\arg \min _{\alpha} u(\alpha)
$$

then $\boldsymbol{x}_{i+1}=\boldsymbol{x}_{i}+\alpha^{*} \boldsymbol{d}_{i}$
The above problem is called "exact line search"

Well-Behaved and Badly-Behaved Functions

- Well-behaved functions: continuous with continuous derivatives

- Badly-behaved functions: discontinuous with discontinuous derivatives

Unimodal and Multimodal Functions

- Multimodal functions: several minima at the selected interval

- Unimodal functions: only one minimum at the selected interval

Optimization Methods for Unimodal Functions

- Interval elimination methods
- Golden section method
- Fibonacci search
- Interpolation methods
- Quadratic interpolation
- Cubic interpolation
- Newton method
- Secant method

Interval Elimination Methods

- Assuming a unimodal interval at the j-th iteration, we can always eliminate a subinterval by evaluating the function at 2 interior points

- Reducing the interval

If $u_{j}^{\mathrm{a}}>u_{j}^{\mathrm{b}}$ the minimum lies in $\left[\alpha_{j}^{\mathrm{a}}, \alpha_{j}^{\mathrm{ub}}\right] \longrightarrow \alpha_{j+1}^{\mathrm{lb}}=\alpha_{j}^{\mathrm{a}}, \alpha_{j+1}^{\mathrm{ub}}=\alpha_{j}^{\mathrm{ub}}$
If $u_{j}^{\mathrm{a}}<u_{j}^{\mathrm{b}}$ the minimum lies in $\left[\alpha_{j}^{\mathrm{lb}}, \alpha_{j}^{\mathrm{b}}\right] \longrightarrow \alpha_{j+1}^{\mathrm{lb}}=\alpha_{j}^{\mathrm{lb}}, \alpha_{j+1}^{\mathrm{ub}}=\alpha_{j}^{\mathrm{b}}$ Dr. J. E. Rayas Sánchez

Golden Section Method

- The interior points are symmetrically selected
- The previous interior points are re-used at the next iteration
- The same relative reduction is used at each iteration

$$
\begin{aligned}
& \rho[\rho+(1-2 \rho)]=1-2 \rho \\
& \rho^{2}-3 \rho+1=0 \\
& \rho=(3 \pm \sqrt{5}) / 2
\end{aligned}
$$

Since $0<\rho<0.5$,
$\rho=(3-\sqrt{5}) / 2=0.38196 \ldots$

Unidimensional Search Methods

Dr. José Ernesto Rayas-Sánchez
February 28, 2019

Golden Section Method - Greek Geometers

" The "golden ratio" or "golden proportion"

Dr. J. E. Rayas Sánchez

Golden Section Algorithm

$\alpha^{*}=\operatorname{GoldenSection}\left(u, \alpha^{\mathrm{b}}, \alpha^{\mathrm{ub}}\right)$
$u: \Re \rightarrow \mathfrak{R} ; \alpha^{\mathrm{l}}, \alpha^{\mathrm{ub}}, \alpha^{*} \in \mathfrak{R}$

Dr. J. E. Rayas Sánchez
begin

$$
j=0 ; \alpha_{j}^{\mathrm{lb}}=\alpha^{\mathrm{lb}} ; \alpha_{j}^{\mathrm{ub}}=\alpha^{\mathrm{ub}} ; \rho=(3-\sqrt{5}) / 2
$$

$$
\alpha_{j}^{\mathrm{a}}=\alpha_{j}^{\mathrm{lb}}+\rho\left(\alpha_{j}^{\mathrm{ub}}-\alpha_{j}^{\mathrm{lb}}\right) ; \alpha_{j}^{\mathrm{b}}=\alpha_{j}^{\mathrm{lb}}+(1-\rho)\left(\alpha_{j}^{\mathrm{ub}}-\alpha_{j}^{\mathrm{lb}}\right)
$$

$$
u_{j}^{\mathrm{a}}=u\left(\alpha_{j}^{\mathrm{a}}\right) ; u_{j}^{\mathrm{b}}=u\left(\alpha_{j}^{\mathrm{b}}\right)
$$

repeat until StoppingCriteria
if $u_{j}^{\mathrm{a}}>u_{j}^{\mathrm{b}}$
$\alpha_{j+1}^{\mathrm{lb}}=\alpha_{j}^{\mathrm{a}} ; \alpha_{j+1}^{\mathrm{ub}}=\alpha_{j}^{\mathrm{ub}}$
$\alpha_{j+1}^{\mathrm{a}}=\alpha_{j}^{\mathrm{b}} ; \alpha_{j+1}^{\mathrm{b}}=\alpha_{j+1}^{\mathrm{lb}}+(1-\rho)\left(\alpha_{j+1}^{\mathrm{ub}}-\alpha_{j+1}^{\mathrm{lb}}\right)$
$u_{j+1}^{\mathrm{a}}=u_{j}^{\mathrm{b}} ; u_{j+1}^{\mathrm{b}}=u\left(\alpha_{j+1}^{\mathrm{b}}\right)$
else
$\alpha_{j+1}^{\mathrm{lb}}=\alpha_{j}^{\mathrm{lb}} ; \alpha_{j+1}^{\mathrm{ub}}=\alpha_{j}^{\mathrm{b}}$
$\alpha_{j+1}^{\mathrm{b}}=\alpha_{j}^{\mathrm{a}} ; \alpha_{j+1}^{\mathrm{a}}=\alpha_{j+1}^{\mathrm{b}}+\rho\left(\alpha_{j+1}^{\mathrm{ub}}-\alpha_{j+1}^{\mathrm{tb}}\right)$
$u_{j+1}^{\mathrm{a}}=u\left(\alpha_{j+1}^{\mathrm{a}}\right) ; u_{j+1}^{\mathrm{b}}=u_{j}^{\mathrm{a}}$
end
$j=j+1$
end
$\alpha^{*}=\left(\alpha_{j}^{\mathrm{lb}}+\alpha_{j}^{\mathrm{ub}}\right) / 2$
end

Unidimensional Search Methods

Dr. José Ernesto Rayas-Sánchez
February 28, 2019

Fibonacci Method

- The interior points are symmetrically selected
- The previous interior points are re-used at the next iteration
- A different relative reduction is used at each iteration

$$
\begin{gathered}
\rho_{j+1}\left(1-\rho_{j}\right)=1-2 \rho_{j} \\
\rho_{j+1}=1-\frac{\rho_{j}}{1-\rho_{j}}
\end{gathered}
$$

Fibonacci Method (cont)

- A sequence of numbers that satisfy

$$
\rho_{j+1}=1-\frac{\rho_{j}}{1-\rho_{j}}
$$

is the following

$$
\rho_{1}=1-\frac{F_{N}}{F_{N+1}} \quad \rho_{2}=1-\frac{F_{N-1}}{F_{N}} \quad \ldots \quad \rho_{j}=1-\frac{F_{N-j+1}}{F_{N-j+2}}
$$

where F_{k} is the k-th Fibonacci number.

- The Fibonacci sequence is
$F_{k+1}=F_{k}+F_{k-1}$ with $F_{-1}=0, F_{0}=1$

$$
\{1,2,3,5,8,13,21, \ldots\}
$$

Unidimensional Search Methods

Dr. José Ernesto Rayas-Sánchez
February 28, 2019

Relative Reduction: Fibonacci vs Golden Section

Search Interval: Fibonacci vs Golden Section

Golden Section Method vs Fibonacci Method

- The Fibonacci method has slightly higher rate of convergence than the Golden Section method
- For a large number of iterations (N large), both methods achieve almost the same uncertainty interval
- The Golden Section method is preferred because it does not require to define N in advance

Quadratic Interpolation Method

- At the j-th iteration it also assumes an unimodal interval

$$
\left[\alpha_{j}^{\mathrm{Lb}}, \alpha_{j}^{\mathrm{ub}}\right]
$$

- It finds an initial interior point, α^{m}, such that

$$
u\left(\alpha_{j}^{\mathrm{lb}}\right)>u\left(\alpha_{j}^{\mathrm{m}}\right) \text { and } u\left(\alpha_{j}^{\mathrm{ub}}\right)>u\left(\alpha_{j}^{\mathrm{m}}\right)
$$

- It fits a quadratic polynomial to the function $u(\alpha)$ over the three previous points at each iteration
- The minimum of the quadratic polynomial, and 2 of the 3 previous points are used for successive interpolations
- Convergence is guaranteed

Quadratic Interpolation - Illustration

Quadratic Interpolation - Illustration (cont)

Quadratic Interpolation Formula

- At the j-th iteration, let

$$
\begin{array}{lll}
a=\alpha_{j}^{\mathrm{lb}} & b=\alpha_{j}^{\mathrm{m}} & c=\alpha_{j}^{\mathrm{ub}} \\
u_{a}=u(a) & u_{b}=u(b) & u_{c}=u(c)
\end{array}
$$

- The minimizer of the quadratic, d, is calculated using

$$
d=\frac{1}{2} \frac{\left(b^{2}-c^{2}\right) u_{a}+\left(c^{2}-a^{2}\right) u_{b}+\left(a^{2}-b^{2}\right) u_{c}}{(b-c) u_{a}+(c-a) u_{b}+(a-b) u_{c}}
$$

Quadratic Interpolation Method - Next Points

- The next points $\alpha_{j+1}^{\mathrm{lb}} \quad \alpha_{j+1}^{\mathrm{m}} \quad \alpha_{j+1}^{\mathrm{ub}}$ are obtained using
If $\left\{\begin{array}{l}b>d \text { and }\left\{\begin{array}{l}u_{b}>u_{d} \text { then } \alpha_{j+1}^{\mathrm{lb}}=a, \alpha_{j+1}^{\mathrm{m}}=d, \alpha_{j+1}^{\mathrm{ub}}=b \\ u_{b}<u_{d} \text { then } \alpha_{j+1}^{\mathrm{Lb}}=d, \alpha_{j+1}^{\mathrm{m}}=b, \alpha_{j+1}^{\mathrm{ub}}=c\end{array}\right. \\ b<d \text { and }\left\{\begin{array}{l}u_{b}>u_{d} \text { then } \alpha_{j+1}^{\mathrm{Lb}}=b, \alpha_{j+1}^{\mathrm{m}}=d, \alpha_{j+1}^{\mathrm{ub}}=c \\ u_{b}<u_{d} \text { then } \alpha_{j+1}^{\mathrm{lb}}=a, \alpha_{j+1}^{\mathrm{m}}=b, \alpha_{j+1}^{\mathrm{ub}}=d\end{array}\right.\end{array}\right.$

Quadratic Interpolation Method - Next Points

- The next points $\alpha_{j+1}^{\mathrm{b}} \alpha_{j+1}^{\mathrm{m}} \quad \alpha_{j+1}^{\mathrm{ub}}$ are obtained using

$$
\text { If }\left\{\begin{array}{l}
b>d \text { and }\left\{\begin{array}{l}
u_{b}>u_{d} \text { then } \alpha_{j+1}^{\mathrm{lb}}=a, \alpha_{j+1}^{\mathrm{m}}=d, \alpha_{j+1}^{\mathrm{ub}}=b \\
u_{b}<u_{d} \text { then } \alpha_{j+1}^{\mathrm{Lb}}=d, \alpha_{j+1}^{\mathrm{m}}=b, \alpha_{j+1}^{\mathrm{ub}}=c
\end{array}\right. \\
b<d \text { and }\left\{\begin{array}{l}
u_{b}>u_{d} \text { then } \alpha_{j+1}^{\mathrm{Lb}}=b, \alpha_{j+1}^{\mathrm{m}}=d, \alpha_{j+1}^{\mathrm{ub}}=c \\
u_{b}<u_{d} \text { then } \alpha_{j+1}^{\mathrm{L}}=a, \alpha_{j+1}^{\mathrm{m}}=b, \alpha_{j+1}^{\mathrm{u}}=d
\end{array}\right.
\end{array}\right.
$$

Available Commands in Matlab

- The standard version of Matlab has the following command for minimizing scalar unidimensional functions:

$$
x=\text { fminbnd(fun, x1, x2) }
$$

returns a scalar x that is a local minimizer in the interval $x 1$ $\leq x \leq x 2$ of the scalar unidimensional function whose name is in string variable fun

- Matlab employs an algorithm based on the Golden Section and the quadratic interpolation methods; the method is very efficient

Exact Line Search

- Given $u: \mathfrak{R}^{n} \rightarrow \mathfrak{R}$ and $\boldsymbol{x} \in \mathfrak{R}^{n}$, when solving

$$
x^{*}=\arg \min _{X} u(x)
$$

at the i-th iterate \boldsymbol{x}_{i} a descent search direction \boldsymbol{d}_{i} is used and the next iterate x_{i+1} is found by solving

$$
\alpha^{*}=\arg \min _{\alpha>0} u\left(x_{i}+\alpha d_{i}\right)=\arg \min _{\alpha>0} u(\alpha)
$$

then

$$
\boldsymbol{x}_{i+1}=\boldsymbol{x}_{i}+\alpha^{*} \boldsymbol{d}_{i}
$$

Exact Line Search (cont.)

- Defining $u(\alpha)$ with no unitary direction

$$
\begin{gathered}
\alpha^{*}=\arg \min _{\alpha>0} u\left(\boldsymbol{x}_{i}+\alpha \boldsymbol{d}_{i}\right)=\arg \min _{\alpha>0} u(\alpha) \\
\boldsymbol{x}_{i+1}=\boldsymbol{x}_{i}+\alpha^{*} \boldsymbol{d}_{i}
\end{gathered}
$$

- Defining $u(\alpha)$ with a unitary direction

$$
\begin{gathered}
\alpha^{*}=\arg \min _{\alpha>0} u\left(\boldsymbol{x}_{i}+\alpha \frac{\boldsymbol{d}_{i}}{\left\|\boldsymbol{d}_{i}\right\|}\right)=\arg \min _{\alpha>0} u(\alpha) \\
\boldsymbol{x}_{i+1}=\boldsymbol{x}_{i}+\alpha^{*} \frac{\boldsymbol{d}_{i}}{\left\|\boldsymbol{d}_{i}\right\|}
\end{gathered}
$$

Bounding the Exact Line Search

$\alpha^{*}=\arg \min _{0<\alpha \leq \alpha^{\mathrm{ub}}} u(\alpha)$

Defining α^{ub} :

1) Arbitrary, e.g., $\alpha^{\mathrm{ub}}=10$
2) Proportional to the current iterate $(m>0)$,
if using $u(\alpha)=u\left(\boldsymbol{x}_{i}+\alpha \boldsymbol{d}_{i}\right)$ then $\alpha^{\mathrm{ub}}=m \frac{\left\|\boldsymbol{x}_{i}\right\|_{2}+\varepsilon}{\left\|\boldsymbol{d}_{i}\right\|_{2}}$
if using $u(\alpha)=u\left(\boldsymbol{x}_{i}+\alpha \frac{\boldsymbol{d}_{i}}{\left\|\boldsymbol{d}_{i}\right\|_{2}}\right)$ then $\alpha^{\mathrm{ub}}=m\left(\left\|\boldsymbol{x}_{i}\right\|_{2}+\varepsilon\right)$

Bounding the Exact Line Search

$$
\alpha^{*}=\underset{0<\alpha \leq \alpha^{\mathrm{ub}}}{\arg \min u(\alpha)}
$$

Defining α^{ub} :

3) Using the rate of change at the current iterate, taking $\left|u^{\prime}(0)\right|=\frac{|u(0)|}{\alpha^{\mathrm{ub}}}$ then $\alpha^{\mathrm{ub}}=|u(0)| /\left|u^{\prime}(0)\right|$
if using $u(\alpha)=u\left(\boldsymbol{x}_{i}+\alpha \boldsymbol{d}_{i}\right)$ then $u^{\prime}(\alpha)=\frac{d u}{d \boldsymbol{x}} \frac{d \boldsymbol{x}}{d \alpha}=\nabla u^{\mathrm{T}} \boldsymbol{d}_{i}$
if using $u(\alpha)=u\left(x_{i}+\alpha \frac{\boldsymbol{d}_{i}}{\left\|\boldsymbol{d}_{i}\right\|_{2}}\right)$ then $u^{\prime}(\alpha)=\nabla u^{\mathrm{T}} \frac{\boldsymbol{d}_{i}}{\left\|\boldsymbol{d}_{i}\right\|_{2}}$

Unidimensional Search Methods

Dr. José Ernesto Rayas-Sánchez
February 28, 2019

Screening to Define Bounds

Screening to Define Bounds (cont.)

Screening to Define Bounds (cont.)

Screening at $\alpha=r^{k}\left(\alpha_{\text {min }}\right)$

