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Outline

 Unconstrained optimization problem

 Recognizing a minimizer

 Stopping criteria

 Classification of unconstrained optimization methods

 Line search methods

 Trust region methods
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Unconstrained Optimization Problems

Formulation:

 x  n

 u: n→

    )(minarg* xx
x

u

4Dr. J. E. Rayas-Sánchez

Recognizing a Local Minimizer

 xs is a stationary point if u(xs) = 0

 First order necessary condition:                                 
If x* is a local minimizer then u(x*) = 0

 Second order sufficient conditions:                           
If u(x*) = 0 and H(u(x*)) is positive definite then 
x* is a strict local minimizer

 If a point is a stationary point and not a local 
minimizer or maximizer, the point is called a 
“saddle point”
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Stopping Criteria

 A maximum number of iterations has been reached

 The objective function is practically not decreasing

 The absolute change in the optimization variables is 
small enough
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Stopping Criteria (cont)

 The relative change in the optimization variables is small 
enough

 The gradient is small enough

 The Hessian is positive definite near the solution (xi  x*, 
combined with previous criterion; usually not necessary)
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Optimization Methods: A Broad Classification

 Non-descent methods

 Descent methods,                                                           
u(xi+1) < u(xi) for every i, or                                           
u(xi+1) < u(xi) for i > N, where N is a number of initial steps

 Two fundamental strategies:

• Line search methods

• Trust region methods

8Dr. J. E. Rayas-Sánchez

Line Search Methods

 At the i-th iteration, the algorithm chooses a direction di

and searches along this direction from the current iterate 
xi for a new iterate xi+1 with a lower function value

 The search direction and the step size can be selected in 
several manners
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A Generic Line Search Algorithm

begin
i = 0, xi = x0

repeat until StoppingCriteria
di = SearchDirection(u, xi)
i = LineSearch(u, xi, di)
xi+1 = xi + di

i = i + 1
end
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Search Directions

Any downhill direction /2 < i < 3/2
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Condition for a downhill direction

x1

x2

x

u(x) = c1

u(x) = c2 (c1>c2)

u(x)

d
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Steepest Descent Direction

 Steepest descent direction:

 The steepest descent direction with exact line searches 
moves in orthogonal steps and it is globally convergent
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Steepest Descent Direction (cont)

The steepest descent direction can be extremely slow 
(zigzagging)



Basics of Unconstrained Optimization
Dr. José Ernesto Rayas-Sánchez

February 7, 2019

7

13Dr. J. E. Rayas-Sánchez

Other Search Directions

 Newton direction

in this case the most used step length is 1

di is a linear transformation of u(xi)

 Quasi-Newton directions

Bi is an approximation of H(u(xi)) which is updated 
after each iteration to take into account the additional 
knowledge gained during the step 
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Other Search Directions (cont)

The two most popular updating formulas for Bi in 
Quasi-Newton directions:

 SR1 formula (Symmetric-Rank-One)

 BFGS formula (Broyden, Fletcher, Goldfarb and 
Shanno)

where 
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Other Search Directions (cont)

Conjugate Gradient direction

where i is a scalar that ensures that di and di1 are 
conjugate

Any two vectors a and b are conjugate with respect to 
a symmetric positive definite matrix A if aTAb = 0 

1)(  iiii u dxd 

16Dr. J. E. Rayas-Sánchez

Finding the Step Size in Line Search Methods 

 Exact line search

The exact line search stops at a point where the local 
gradient is orthogonal to the search direction

 Soft line search                                                              
(See: P.E. Frandsen, K. Jonasson, H.B. Nielsen and O. Tingleff, Unconstrained 
Optimization.  Lyngby, Denmark: Department of Mathematical Modeling, Technical 
University of Denmark, 1999, pp. 26-30)
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Trust Region Methods

 At the i-th iteration, a model mi of the objective function 
u is created.  The algorithm restricts the search for a 
minimizer of mi to some region around xi.  If the 
minimizer of mi does not produce a sufficient decrease 
in u, the trust region is shrunk and the model is again 
minimized

 There are several ways to construct the model mi, and to 
define the trust region (ball, elliptical, box-shaped, etc.)
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A Generic Trust Region Algorithm

begin
i = 0, xi = x0, r = r0 > 0
repeat until StoppingCriteria

mi(s) = BuildModel(u, xi)

if a > 0.75 then r = 2r
if a < 0.25 then r = r/3
if a > 0 then xi+1 = xi + si

i = i + 1
end
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