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Outline

 Unconstrained optimization problem

 Recognizing a minimizer

 Stopping criteria

 Classification of unconstrained optimization methods

 Line search methods

 Trust region methods
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Unconstrained Optimization Problems

Formulation:

 x  n

 u: n→
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Recognizing a Local Minimizer

 xs is a stationary point if u(xs) = 0

 First order necessary condition:                                 
If x* is a local minimizer then u(x*) = 0

 Second order sufficient conditions:                           
If u(x*) = 0 and H(u(x*)) is positive definite then 
x* is a strict local minimizer

 If a point is a stationary point and not a local 
minimizer or maximizer, the point is called a 
“saddle point”
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Stopping Criteria

 A maximum number of iterations has been reached

 The objective function is practically not decreasing

 The absolute change in the optimization variables is 
small enough
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Stopping Criteria (cont)

 The relative change in the optimization variables is small 
enough

 The gradient is small enough

 The Hessian is positive definite near the solution (xi  x*, 
combined with previous criterion; usually not necessary)
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Optimization Methods: A Broad Classification

 Non-descent methods

 Descent methods,                                                           
u(xi+1) < u(xi) for every i, or                                           
u(xi+1) < u(xi) for i > N, where N is a number of initial steps

 Two fundamental strategies:

• Line search methods

• Trust region methods
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Line Search Methods

 At the i-th iteration, the algorithm chooses a direction di

and searches along this direction from the current iterate 
xi for a new iterate xi+1 with a lower function value

 The search direction and the step size can be selected in 
several manners
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A Generic Line Search Algorithm

begin
i = 0, xi = x0

repeat until StoppingCriteria
di = SearchDirection(u, xi)
i = LineSearch(u, xi, di)
xi+1 = xi + di

i = i + 1
end
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Search Directions

Any downhill direction /2 < i < 3/2
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Condition for a downhill direction

x1

x2

x

u(x) = c1

u(x) = c2 (c1>c2)

u(x)
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Steepest Descent Direction

 Steepest descent direction:

 The steepest descent direction with exact line searches 
moves in orthogonal steps and it is globally convergent
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Steepest Descent Direction (cont)

The steepest descent direction can be extremely slow 
(zigzagging)
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Other Search Directions

 Newton direction

in this case the most used step length is 1

di is a linear transformation of u(xi)

 Quasi-Newton directions

Bi is an approximation of H(u(xi)) which is updated 
after each iteration to take into account the additional 
knowledge gained during the step 
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Other Search Directions (cont)

The two most popular updating formulas for Bi in 
Quasi-Newton directions:

 SR1 formula (Symmetric-Rank-One)

 BFGS formula (Broyden, Fletcher, Goldfarb and 
Shanno)
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Other Search Directions (cont)

Conjugate Gradient direction

where i is a scalar that ensures that di and di1 are 
conjugate

Any two vectors a and b are conjugate with respect to 
a symmetric positive definite matrix A if aTAb = 0 
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Finding the Step Size in Line Search Methods 

 Exact line search

The exact line search stops at a point where the local 
gradient is orthogonal to the search direction

 Soft line search                                                              
(See: P.E. Frandsen, K. Jonasson, H.B. Nielsen and O. Tingleff, Unconstrained 
Optimization.  Lyngby, Denmark: Department of Mathematical Modeling, Technical 
University of Denmark, 1999, pp. 26-30)
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Trust Region Methods

 At the i-th iteration, a model mi of the objective function 
u is created.  The algorithm restricts the search for a 
minimizer of mi to some region around xi.  If the 
minimizer of mi does not produce a sufficient decrease 
in u, the trust region is shrunk and the model is again 
minimized

 There are several ways to construct the model mi, and to 
define the trust region (ball, elliptical, box-shaped, etc.)
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A Generic Trust Region Algorithm

begin
i = 0, xi = x0, r = r0 > 0
repeat until StoppingCriteria

mi(s) = BuildModel(u, xi)

if a > 0.75 then r = 2r
if a < 0.25 then r = r/3
if a > 0 then xi+1 = xi + si

i = i + 1
end
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