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Unconstrained Optimization Problems

Formulation:

X" = argmjnu(x)

= X e RN

= U: R"—R

Dr. J. E. Rayas-Sanchez

Recognizing a Local Minimizer

= X% 1is a stationary point if VU(x®) =0

= First order necessary condition:
If X" is a local minimizer then Vu(x™) =0

= Second order sufficient conditions:
If Vu(x™) = 0 and H(u(x")) is positive definite then
X" is a strict local minimizer

= Ifa point is a stationary point and not a local
minimizer or maximizer, the point is called a
“saddle point”
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Stopping Criteria

A maximum number of iterations has been reached
I>0

= The objective function is practically not decreasing

U(Xi) - U(Xm) <&

= The absolute change in the optimization variables is
small enough

” Xin — X ||2< &,
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Stopping Criteria (cont)

The relative change in the optimization variables is small
enough
|| Xig =% ||2< ‘93(” X ”2 +‘94)
The gradient is small enough
IVUu(x) [l < &

The Hessian is positive definite near the solution (X; = X",
combined with previous criterion; usually not necessary)

(Xi+1 =X )T H (U(Xi))(xm - Xi) >0

Dr. J. E. Rayas-Sanchez



Basics of Unconstrained Optimization
Dr. José Ernesto Rayas-Sanchez
February 7, 2019

Optimization Methods: A Broad Classification

= Non-descent methods

= Descent methods,
U(Xi;;) < u(x;) for every i, or
U(X;;;) < u(x;) for i > N, where N is a number of initial steps

= Two fundamental strategies:
* Line search methods

* Trust region methods
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Line Search Methods

= At the i-th iteration, the algorithm chooses a direction d;
and searches along this direction from the current iterate
X; for a new iterate X;,, with a lower function value

= The search direction and the step size can be selected in
several manners
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A Generic Line Search Algorithm

begin
1=0, X; =X,
repeat until StoppingCriteria
d, = SearchDirection(u, X;)
a; = LineSearch(u, X;, d;)

Xip = X+ af,
1=1+1
end
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Search Directions

Any downbhill direction 7/2 < 6 <37/2
u(x, +&d,)=u(x,)+ed Vu(x,) +O(g?)
d'Vu(x,)<0 — Condition for a downhill direction

., [Vu(x, ) cos 8, <0

XA U(X)=c VU(X)
o
X d
U= (c;>Cy)
»
Xi
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Steepest Descent Direction

= Steepest descent direction: d, =-Vu(X;)

= The steepest descent direction with exact line searches
moves in orthogonal steps and it is globally convergent
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Steepest Descent Direction (cont)

The steepest descent direction can be extremely slow
(zigzagging)

(C0>Cl >C >)
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Other Search Directions

= Newton direction
d. =—Hu(x))"Vu(x,)
in this case the most used step length is 1
d; is a linear transformation of —Vu(X;)
= Quasi-Newton directions
d, =—B, 'Vu(x,)

B, is an approximation of H(Vu(X;)) which is updated
after each iteration to take into account the additional
knowledge gained during the step
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Other Search Directions (cont)

The two most popular updating formulas for B; in
Quasi-Newton directions:

= SRI formula (Symmetric-Rank-One)
:
Bi+1 = Bi _|_(yi — Bisi)(yi - BiSi)

(yi - Bisi)T Si
= BFGS formula (Broyden, Fletcher, Goldfarb and
Shanno)
_pg _BssiB vy
i+1 i SIT Bi Si y,T Si
where
Si=Xia—X y; =Vu(x,,)—Vu(x)
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Other Search Directions (cont)

Conjugate Gradient direction
d; =-Vu(x)+ £d,,

where /£ is a scalar that ensures that d; and d;_, are
conjugate

Any two vectors a and b are conjugate with respect to
a symmetric positive definite matrix A if aTAb =0
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Finding the Step Size in Line Search Methods

= Exact line search
o, =argminu( X, +ad.) =argmin V(a

The exact line search stops at a point where the local
gradient is orthogonal to the search direction

= Soft line search
(See: P.E. Frandsen, K. Jonasson, H.B. Nielsen and O. Tingleff, Unconstrained
Optimization. Lyngby, Denmark: Department of Mathematical Modeling, Technical
University of Denmark, 1999, pp. 26-30)
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Trust Region Methods

= At the i-th iteration, a model m; of the objective function
u is created. The algorithm restricts the search for a
minimizer of M, to some region around X;. If the
minimizer of m; does not produce a sufficient decrease
in U, the trust region is shrunk and the model is again
minimized

= There are several ways to construct the model m;, and to
define the trust region (ball, elliptical, box-shaped, etc.)
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A Generic Trust Region Algorithm

begin
1=0, X=Xy, r=ry,>0
repeat until StoppingCriteria
m,(s) = BuildModel(u, x;)

S, = arggrelig m,(s) where Q2={s:[s|<r}

a:[u(xi)_u(xi +Si)]/[mi(0)_mi(5i)]
ifa>0.75thenr=2r
ifa<0.25thenr=r/3
ifa>0then X, = X; +5;
i=it+1

end
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