Dr. José Ernesto Rayas-Sánchez February 20, 2019

# **Methods for Constrained Optimization**

Dr. José Ernesto Rayas-Sánchez

### Outline

- Constrained optimization problem
- Box constraints
- Methods for constrained optimization problems
- Elimination of variables
- Penalty methods
- Sequential quadratic programming (SQP)
- Minimax formulations

Dr. José Ernesto Rayas-Sánchez February 20, 2019

# **Constrained Optimization Problem**

Standard form:

$$x^* = \arg\min_{x} u(x)$$
  
subject to
 $h(x) = 0$   
 $g(x) \le 0$   
 $x^{\text{lb}} \le x \le x^{\text{ub}}$ 

- $x, x^{\text{lb}}, x^{\text{ub}} \in \Re^n$
- $u: \mathbb{R}^n \to \mathbb{R}, h: \mathbb{R}^n \to \mathbb{R}^E, g: \mathbb{R}^n \to \mathbb{R}^I$
- It is assumed n > E

Dr. J. E. Rayas-Sánchez

# Constrained Optimization Problem (cont)

$$x^* = \arg\min_{x} u(x)$$
  
subject to
 $h(x) = 0$   
 $g(x) \le 0$   
 $x^{\text{lb}} \le x \le x^{\text{ub}}$ 

It is generally assumed that satisfying all the constraints is more important than minimizing u(x), i.e., feasibility is more important than optimality

Dr. José Ernesto Rayas-Sánchez February 20, 2019

# Constrained Optimization Problem (cont)

$$x^* = \arg\min_{x} u(x)$$
  
subject to  
 $h(x) = 0$   
 $g(x) \le 0$   
 $x^{\text{lb}} \le x \le x^{\text{ub}}$ 

The feasible set:

$$\Omega = \{ \boldsymbol{x} \in \mathfrak{R}^n \mid \boldsymbol{h}(\boldsymbol{x}) = \boldsymbol{0} \wedge \boldsymbol{g}(\boldsymbol{x}) \leq \boldsymbol{0} \wedge \boldsymbol{x}^{\text{lb}} \leq \boldsymbol{x} \leq \boldsymbol{x}^{\text{ub}} \}$$

Dr. J. E. Rayas-Sánchez

# Constrained Optimization Problem (cont)

$$x^* = \arg\min_{x \in \Omega} u(x)$$

$$\Omega = \{x \in \Re^n \mid h(x) = 0 \land g(x) \le 0 \land x^{\text{lb}} \le x \le x^{\text{ub}}\}$$

Dr. José Ernesto Rayas-Sánchez February 20, 2019

## Dealing with Box Constraints

Box constraints can be treated as inequality constraints

$$\begin{array}{cccc}
\mathbf{x}^{\text{lb}} \leq \mathbf{x} \leq \mathbf{x}^{\text{ub}} & \longrightarrow & g_{1}(\mathbf{x}) = x_{1} - x_{1}^{\text{ub}} \leq 0 \\
g_{2}(\mathbf{x}) = x_{1}^{\text{lb}} - x_{1} \leq 0 \\
& \vdots \\
g_{2n-1}(\mathbf{x}) = x_{n} - x_{n}^{\text{ub}} \leq 0 \\
g_{2n}(\mathbf{x}) = x_{n}^{\text{lb}} - x_{n} \leq 0
\end{array}$$

• They can also be considered by restricting the optimization space (through variable transformations)

Dr. J. E. Rayas-Sánchez

# Box Constraints – Restricting Optimization Space

- Box constraints can be incorporated into an unconstrained optimization problem by transforming the optimization variables
- Instead of solving

$$x^* = \arg\min_{x} u(x)$$
subject to

 $x^{\text{lb}} \leq x \leq x^{\text{ub}}$ 

we solve

$$z^* = \arg\min_{z} u(z)$$

ConstraintTransformation $x_i \ge 0$  $x_i = z_i^2$  $x_i > 0$  $x_i = e^{z_i}$  $x_i \ge x_i^{lb}$  $x_i = x_i^{lb} + z_i^2$  $x_i > x_i^{lb}$  $x_i = x_i^{lb} + e^{z_i}$  $-1 \le x_i \le 1$  $x_i = \sin z_i$  $0 \le x_i \le 1$  $x_i = (\sin z_i)^2$  $0 < x_i < 1$  $x_i = \frac{e^{z_i}}{1 + e^{z_i}}$ 

Dr. J. E. Rayas-Sánchez

(Bandler, 1997)

Dr. José Ernesto Rayas-Sánchez February 20, 2019

# Box Constraints – Restricting Opt. Space (cont)

| Constraint                                    | Transformation                                                                                                     |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| $x_i^{\text{lb}} \le x_i \le x_i^{\text{ub}}$ | $x_i = x_i^{\text{lb}} + (x_i^{\text{ub}} - x_i^{\text{lb}})(\sin z_i)^2$                                          |
|                                               | $x_i = \frac{1}{2} (x_i^{\text{lb}} + x_i^{\text{ub}}) + \frac{1}{2} (x_i^{\text{ub}} - x_i^{\text{lb}}) \sin z_i$ |
| $x_i^{\text{lb}} < x_i < x_i^{\text{ub}}$     | $x_i = x_i^{\text{lb}} + \left(x_i^{\text{ub}} - x_i^{\text{lb}}\right) \left(\frac{e^{z_i}}{1 + e^{z_i}}\right)$  |

Dr. J. E. Rayas-Sánchez (Bandler, 1997)

# Methods for Constrained Optimization

- Indirect methods (or Sequential Unconstrained Minimization Techniques, SUMT):
  - Elimination of variables (equality constraints)
  - Exterior penalty function method (EPF)
  - Augmented Lagrange multiplier method (ALM)
- Direct methods:
  - Sequential linear programming (SLP)
  - Sequential quadratic programming (SQP)
  - Generalized reduced gradient method (GRG)
  - Sequential gradient restoration algorithm (SGRA)

Dr. José Ernesto Rayas-Sánchez February 20, 2019

# Equality Constraints – Elimination of Variables

When solving

$$x^* = \arg\min_{x} u(x)$$
  
subject to  
 $h(x) = 0$ 

we can reduce the number of equality constraints by eliminating some of the optimization variables

- If sufficient variables are eliminated, we can obtain an unconstrained optimization problem
- This technique must be carefully used (the resultant problem can be ill-conditioned)

Dr. J. E. Rayas-Sánchez

Elimination of Variables – Example 1 ©



Dr. José Ernesto Rayas-Sánchez February 20, 2019

# Elimination of Variables – Example 2 🙁



# **Equality Constraints – Penalty Functions**

Instead of solving

$$x^* = \arg\min_{x} u(x)$$

subject to

$$h(x) = 0$$

we solve

$$\boldsymbol{x}^* = \arg\min_{\boldsymbol{x}} U(\boldsymbol{x})$$

where

$$U(\boldsymbol{x}) = u(\boldsymbol{x}) + r^{\mathrm{h}} \|\boldsymbol{h}(\boldsymbol{x})\|_{2}^{2}$$

 $\|\boldsymbol{h}(\boldsymbol{x})\|_2^2$ : penalty function

 $r^{h} \in \Re$ : penalty coefficient

Dr. José Ernesto Rayas-Sánchez February 20, 2019

# Inequality Constraints – Penalty Functions

Instead of solving

$$x^* = \arg\min_{x} u(x)$$
  
subject to  
 $g(x) \le 0$ 

we solve

$$x^* = \arg\min_{x} U(x)$$

where

$$U(\mathbf{x}) = u(\mathbf{x}) + r^{\mathrm{g}} \|G(\mathbf{x})\|_{2}^{2}$$

$$G_j = \max\{0, g_j(\boldsymbol{x})\}$$
  $\|\boldsymbol{G}(\boldsymbol{x})\|_2^2$ : penalty function

 $r^{\mathrm{g}} \in \mathfrak{R}$ : penalty coefficient

Dr. J. E. Rayas-Sánchez

# Exterior Penalty Function (EPF) Method

Original problem:

 $x^* = \arg\min_{x} u(x)$ subject to h(x) = 0 $g(x) \le 0$ 

 $x^{\text{lb}} \leq x \leq x^{\text{ub}}$ 

Indirect solution through EPF method:

$$z^* = \arg\min_{z} u(z) + p(z, r^{h}, r^{g})$$

$$p(z, r^{h}, r^{g}) = r^{h} \| \boldsymbol{h}(z) \|_{2}^{2} + r^{g} \| \boldsymbol{G}(z) \|_{2}^{2}$$

$$G_j = \max\{0, g_j(z)\}$$

$$x_i = x_i^{lb} + (x_i^{ub} - x_i^{lb})(\sin z_i)^2$$

$$j = 1, 2, \dots, I$$
  $i = 1, 2, \dots, n$ 

Dr. José Ernesto Rayas-Sánchez February 20, 2019

### Exterior Penalty Function (EPF) Method (cont)

- The optimal solution  $z^* = \arg\min_{z} u(z) + p(z, r^h, r^g)$  is a function of the penalty coefficients  $r^h$  and  $r^g$
- Penalty coefficients should be gradually increased until all constraints are satisfied (exterior method)
- The EPF method is very sensitive to the initial values of the penalty coefficients,  $r^h$  and  $r^g$

Dr. J. E. Rayas-Sánchez

17

# An EPF Algorithm

```
x^* = \text{EPF}(u, x_0, h, g)
u: \mathfrak{R}^n \to \mathfrak{R} ; h: \mathfrak{R}^n \to \mathfrak{R}^E ; g: \mathfrak{R}^n \to \mathfrak{R}^I ;
x_0, x^* \in \mathfrak{R}^n
```

```
\begin{aligned} &\textbf{begin} \\ &\textbf{set } c^{\text{h}}, c^{\text{g}}, \text{ and } \varepsilon \\ &r_0^{\text{h}} = \frac{\mid u(\boldsymbol{x}_0) \mid}{\left\lVert \boldsymbol{h}(\boldsymbol{x}_0) \right\rVert_2^2 + \varepsilon} \ ; \ r_0^{\text{g}} = \frac{\mid u(\boldsymbol{x}_0) \mid}{\left\lVert \boldsymbol{g}(\boldsymbol{x}_0) \right\rVert_2^2 + \varepsilon} \ ; \ i = 0 \\ &\textbf{repeat until } StoppingCriteria \\ &\boldsymbol{x}_0 = \boldsymbol{x}_i \\ &\boldsymbol{x}_{i+1} = \arg\min_{\boldsymbol{x}} u(\boldsymbol{x}) + r_i^{\text{h}} \sum_{k=1}^E h_k^2(\boldsymbol{x}) + r_i^{\text{g}} \sum_{k=1}^I (\max\{0, g_k(\boldsymbol{x})\})^2 \\ &r_{i+1}^{\text{h}} = c^{\text{h}} r_i^{\text{h}} \\ &r_{i+1}^{\text{g}} = c^{\text{g}} r_i^{\text{g}} \\ &i = i+1 \\ &\textbf{end} \\ &\boldsymbol{x}^* = \boldsymbol{x}_i \end{aligned}
```

Dr. José Ernesto Rayas-Sánchez February 20, 2019

# Sequential Quadratic Programming (SQP)

- SQP are considered the state-of-the-art in nonlinear programming
- At each iteration, the objective function is approximated by a quadratic function, and the nonlinear constraints are approximated by linear constraints
- The quadratic sub-problem is solved to find a search direction at the current iterate
- The next iterate is obtained from a line search

Dr. J. E. Rayas-Sánchez

. .

# **SQP Sub-problem**

At the current iterate  $x_i$ ,

• The objective function is expanded quadratically

$$u^{(i)}(\boldsymbol{d}) = u(\boldsymbol{x}_i) + \boldsymbol{d}^T \nabla u(\boldsymbol{x}_i) + \frac{1}{2} \boldsymbol{d}^T \boldsymbol{H}(u(\boldsymbol{x}_i)) \boldsymbol{d} \approx u(\boldsymbol{x}_i + \boldsymbol{d})$$

The constraints are expanded linearly

$$h^{(i)}(x) = h(x_1) + J(h(x_1))d \approx h(x_1 + d)$$

$$g^{(i)}(x) = g(x_i) + J(g(x_i))d \approx g(x_i + d)$$

Dr. J. E. Rayas-Sánchez

Dr. José Ernesto Rayas-Sánchez February 20, 2019

### SQP Sub-problem (cont)

At the current iterate  $x_i$ ,

• The search direction  $d_i$  is found by solving

$$d_{i} = \arg\min_{d} d^{T} \nabla u(x_{i}) + \frac{1}{2} d^{T} H(u(x_{i})) d$$
subject to
$$h(x_{i}) + J(h(x_{i})) d = 0$$

$$g(x_{i}) + J(g(x_{i})) d \leq 0$$

$$x^{\text{lb}} \leq x \leq x^{\text{ub}}$$

• The next iterate is calculated using  $\mathbf{x}_{i+1} = \mathbf{x}_i + \alpha^* \mathbf{d}_i$ where  $\alpha^*$  is obtained from a line search on  $u(\mathbf{x}_i + \alpha \mathbf{d}_i)$ 

Dr. J. E. Rayas-Sánchez

. .

### **Minimax Formulations**

- Minimax formulations are used to minimize the maximum error of a function (model response) with respect to a number of specifications
- A minimax formulation can be implemented as a constrained or as an unconstrained optimization problem

Dr. J. E. Rayas-Sánchez

Dr. José Ernesto Rayas-Sánchez February 20, 2019

### Minimax Formulations – Unconstrained

$$x^* = \arg\min_{x} \max\{\dots e_k(x)\dots\}$$

where

$$e_{k}(\mathbf{x}) = \begin{cases} R_{k}(\mathbf{x}) - S_{k}^{\text{ub}} & \text{for all } k \in I^{\text{ub}} \\ S_{k}^{\text{lb}} - R_{k}(\mathbf{x}) & \text{for all } k \in I^{\text{lb}} \end{cases}$$

- $R_k(x)$  is the k-th model response at point x
- $S_k^{\text{ub}}$  and  $S_k^{\text{lb}}$  are the upper and lower bound specifications
- I<sup>ub</sup> and I<sup>lb</sup> are index sets (not necessarily disjoint)
- Vector e(x) contains all the error functions with respect to the design specifications

Dr. J. E. Rayas-Sánchez

\_\_

# Minimax Formulations – Unconstrained (cont)

$$\boldsymbol{x}^* = \arg\min_{\boldsymbol{x}} U(\boldsymbol{x})$$

$$U(\mathbf{x}) = \max\{\ldots e_{k}(\mathbf{x})\ldots\}$$

where

$$e_k(\mathbf{x}) = \begin{cases} R_k(\mathbf{x}) - S_k^{\text{ub}} & \text{for all } k \in I^{\text{ub}} \\ S_k^{\text{lb}} - R_k(\mathbf{x}) & \text{for all } k \in I^{\text{lb}} \end{cases}$$

Dr. José Ernesto Rayas-Sánchez February 20, 2019

## Minimax Formulations – Unconstrained (cont)

$$x^* = \arg\min_{x} U(x)$$

$$U(\mathbf{x}) = \max\{\dots e_{\iota}(\mathbf{x})\dots\}$$

Equality specifications  $S_k^{\text{eq}}$  can be implemented as a combination of upper and lower specifications ( $\Delta S^{\text{eq}} > 0$ )

$$e_{k}(\mathbf{x}) = \begin{cases} R_{k}(\mathbf{x}) - (S_{k}^{\text{eq}} + \Delta S^{\text{eq}}) & \text{for all } k \in I^{\text{eq}} \\ (S_{k}^{\text{eq}} - \Delta S^{\text{eq}}) - R_{k}(\mathbf{x}) & \text{for all } k \in I^{\text{eq}} \end{cases}$$

or as a single error function

$$e_k(\mathbf{x}) = |R_k(\mathbf{x}) - S_k^{\text{eq}}| - \Delta S^{\text{eq}}$$
 for all  $k \in I^{\text{eq}}$ 

Dr. J. E. Rayas-Sánchez

25

## Minimax Formulations – Unconstrained (cont)

$$x^* = \arg\min_{\mathbf{r}} \max\{\ldots e_k(\mathbf{x})\ldots\}$$

where

$$e_{k}(\boldsymbol{x}) = \begin{cases} R_{k}(\boldsymbol{x}) - S_{k}^{\text{ub}} & \text{for all } k \in I^{\text{ub}} \\ S_{k}^{\text{lb}} - R_{k}(\boldsymbol{x}) & \text{for all } k \in I^{\text{lb}} \\ |R_{k}(\boldsymbol{x}) - S_{k}^{\text{eq}}| - \Delta S^{\text{eq}} & \text{for all } k \in I^{\text{eq}} \end{cases}$$

- $R_k(x)$  is the k-th model response at point x
- $S_k^{\text{ub}}$  and  $S_k^{\text{lb}}$  are the upper and lower bound specifications
- $S_k^{\text{eq}}$  is an equality specification  $(\pm \Delta S^{\text{eq}})$
- I<sup>ub</sup> and I<sup>lb</sup> are index sets (not necessarily disjoint)

Dr. J. E. Rayas-Sánchez

Dr. José Ernesto Rayas-Sánchez February 20, 2019

# Minimax Formulations – Relative Errors

Formulation

$$e_{k}(\boldsymbol{x}) = \begin{cases} R_{k}(\boldsymbol{x}) - S_{k}^{\text{ub}} & \text{for all } k \in I^{\text{ub}} \\ S_{k}^{\text{lb}} - R_{k}(\boldsymbol{x}) & \text{for all } k \in I^{\text{lb}} \\ \left| R_{k}(\boldsymbol{x}) - S_{k}^{\text{eq}} \right| - \Delta S^{\text{eq}} & \text{for all } k \in I^{\text{eq}} \end{cases}$$

may require the usage of weighting factors

We can use instead a relative formulation for the error functions

Dr. J. E. Rayas-Sánchez

27

# Minimax Formulations – Relative Errors (cont)

• Using relative error functions (assuming  $S_k^{\text{ub}} > 0$  and  $S_k^{\text{lb}} > 0$ )

$$e_{k}(\mathbf{x}) = \begin{cases} \frac{R_{k}(\mathbf{x})}{S_{k}^{\text{ub}} + \varepsilon} - 1 & \text{for all } k \in I^{\text{ub}} \\ 1 - \frac{R_{k}(\mathbf{x})}{S_{k}^{\text{lb}} + \varepsilon} & \text{for all } k \in I^{\text{lb}} \\ \frac{|R_{k}(\mathbf{x}) - S_{k}^{\text{eq}}|}{\varepsilon} - 1 & \text{for all } k \in I^{\text{eq}} \end{cases}$$

where  $\varepsilon$  is an arbitrary small positive number

Dr. José Ernesto Rayas-Sánchez February 20, 2019

# Minimax Formulations – Constrained

• We define an additional optimization variable (ceiling)

$$x^* = \arg\min_{x} x_{n+1}$$
subject to
$$e_k(x) - x_{n+1} \le 0$$

where

$$e_k(\mathbf{x}) = \begin{cases} R_k(\mathbf{x}) - S_k^{\text{ub}} & \text{for all } k \in I^{\text{ub}} \\ S_k^{\text{lb}} - R_k(\mathbf{x}) & \text{for all } k \in I^{\text{lb}} \end{cases}$$

- $R_k(x)$  is the k-th model response at point x
- $S_k^{\text{ub}}$  and  $S_k^{\text{lb}}$  are the upper and lower bound specifications
- I<sup>ub</sup> and I<sup>lb</sup> are index sets (not necessarily disjoint)

Dr. J. E. Rayas-Sánchez