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Constrained Optimization Problem

Standard form:
X" =arg mjnu(x)

subject to
h(x)=0
g(x)<0
X" < x<x®
- X, X, xub ¢ 9"
= U: R"—R, h: R"—RE, g: R—HNR!
= Jtisassumed n>E
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Constrained Optimization Problem (cont)

X = argm}nu(x)
subject to
h(x)=0
g(x)<0

X< x < x®

It is generally assumed that satisfying all the
constraints is more important than minimizing u(X),
1.e., feasibility is more important than optimality
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Constrained Optimization Problem (cont)

X' = argminu(Xx)
subject to
h(x)=0
g(x)<0

X" < x<x®

The feasible set:

Q={XxeR" h(X)=0Ag(X)<0A X" <x< X"}
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Constrained Optimization Problem (cont)

X' =arg min U(X
gminu(Xx)

Q={XeR"|h(X)=0Ag(X)<0A X" <x< X"}
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Dealing with Box Constraints

= Box constraints can be treated as inequality constraints
gl(X) =X - XIUb <0
9,(X) = Xllb -X% <0

XP <X XY ey

Gyry (X) =X, = X" <0
an(X) = Xrl1b _Xn S 0

= They can also be considered by restricting the
optimization space (through variable transformations)
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Box Constraints — Restricting Optimization Space

= Box constraints can be incorporated into an unconstrained
optimization problem by transforming the optimization

variables
Constraint | Transformation
= Instead of solving >
X :argm)%nu(x) X. >0 x; e’
subject to X; > xi° X = X\ + 77
Ib ub
< x< b _ b z;
X" s X=X Xi > X; X, =X +e”
* 0<x <1 | x =(sinz)?
7 = argmzmu(z) .
1
0<x <1 x = °
1 7
1+e"
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Box Constraints — Restricting Opt. Space (cont)

Constraint Transformation
X, = XI° + (X" —x")(sin z, )
Ib ub
Xi” <X <X 1 1
| | | o
X, = — (xi“’ + xi“b)+ — (%" —x/*)sin z,
2 2
Ib b b b o) €f
u
Xj” <X <X X; = X +(xi — X e
+e
Dr. J. E. Rayas-Sénchez (Bandler, 1997)

Methods for Constrained Optimization

= Indirect methods (or Sequential Unconstrained
Minimization Techniques, SUMT):

— Elimination of variables (equality constraints)

— Exterior penalty function method (EPF)

— Augmented Lagrange multiplier method (ALM)
= Direct methods:

— Sequential linear programming (SLP)

— Sequential quadratic programming (SQP)

— Generalized reduced gradient method (GRG)

— Sequential gradient restoration algorithm (SGRA)
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Equality Constraints — Elimination of Variables

= When solving
X" =arg minu(X)
subject to
h(x)=0
we can reduce the number of equality constraints by
eliminating some of the optimization variables

= [f sufficient variables are eliminated, we can obtain an
unconstrained optimization problem

= This technique must be carefully used (the resultant
problem can be ill-conditioned)
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Elimination of Variables — Example 1 ©

min X, + X;

0 2 2
. , m)inx1 +(1-x)
SUbj ect to N 0.5 Objective Function
= M-~~~ —"F~"~"—"—"——————— 1
X1+X2_1:0 0.5 60k - - L J

Objective Function Contours and Constraints

Sf-1- " r-a- """ - -1

>
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Elimination of Variables — Example 2 ®

: 2 2
min X + X s 2 3
A min X, + (X, —1)
X — 1 1
X
SUbj ect to . { 1 :| Objective Function
X = 100
3 2 _
(Xl_l) _X2_O O 50
Objective Function Contours and Constraints
5 < A 0
/Tk

-100

-150

=<0
-209
N Minimizer is
5 : unbounded
i . %
Equality Constraints — Penalty Functions
Instead of solving
X" =arg minu(X)
subject to
h(x)=0
we solve
X" =argmjnU (X)
where
2
U () =u(x)+r'h(x)f,
Ih(x)|. : penalty function
b 1B Ravas.Sinch r'" e R: penalty coefficient
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Inequality Constraints — Penalty Functions

Instead of solving

X" =arg minu(x)

subject to
g(x)<0
we solve
X" =arg minU (X)
where

U () =u(x)+r2[G(x);
G, =max{0, g,(X)} IG(x)|; : penalty function

r‘ e R: penalty coefficient

Dr. J. E. Rayas-Sanchez 15

Exterior Penalty Function (EPF) Method

Original problem: Indirect solution through EPF

i _ method:
X =argminU(X) .
X 2’ =argmjnu(z) + p(z,r",re)

subject to
h(x)=0 p(z.r",r*)=r"|h(z); +r*[G(2)];
X}fi"z i ‘)’(ub G, =max{0, g,(2)}
X =% +(X°=x")(sinz)’
j=12,...,1 i=12,...,n
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Exterior Penalty Function (EPF) Method (cont)

- The optimal solution Z = argmzin u(z)+ p(z,r',re)
is a function of the penalty coefficients r" and re

= Penalty coefficients should be gradually increased until all
constraints are satisfied (exterior method)

= The EPF method is very sensitive to the initial values of
the penalty coefficients, r* and rs
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An EPF Algorithm

X* = EPF(U, X09 h) g)
u: R"—R ; h: R"HRE; g: R"HR';

Xo, X € R"
begin
setc”, c% and ¢
u(x u(x .
o [u(xg) | e |u(Xo)| .

0 — 2 s 1o — 2 5
hox)l; +2 latxo); +¢
repeat until StoppingCriteria
XO = Xi

Xt = argmin0 + 1 L0041 3 (max (0,9, (9))°

k=1 k=1
h h,h
i1 =C
g _ 88
ri+1_C ri
i=i+1
end
X =X

end
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Sequential Quadratic Programming (SQP)

= SQP are considered the state-of-the-art in nonlinear
programming

= At each iteration, the objective function is approximated
by a quadratic function, and the nonlinear constraints are
approximated by linear constraints

= The quadratic sub-problem is solved to find a search
direction at the current iterate

= The next iterate is obtained from a line search
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SQP Sub-problem

At the current iterate X;,

= The objective function is expanded quadratically

u?(d)= u(xi)+dTVu(xi)+;dTH(u(xi))d ~Uu(x +d)

= The constraints are expanded linearly
h®(x) = h(x;) +J(h(x))d ~ h(x; +d)
g¥(x)=9(x)+I(g(x)d ~ g(x; +d)

Dr. J. E. Rayas-Sanchez
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SQP Sub-problem (cont)

At the current iterate X;,
= The search direction d; is found by solving
d = argmd'n d"Vu(x,)+ ;dT H (u(x,))d
subject to
h(x,)+J(h(x,))d =0

g(x;)+J(g(x;)d <0
X <x <X

= The next iterate is calculated using X, = X; + &'d;
where " is obtained from a line search on u(x; + ad;)
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Minimax Formulations

= Minimax formulations are used to minimize the
maximum error of a function (model response) with
respect to a number of specifications

= A minimax formulation can be implemented as a
constrained or as an unconstrained optimization problem

Dr. J. E. Rayas-Sanchez
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Minimax Formulations — Unconstrained

X = argm}nmax{...ek(x)...}
where
R.(X)—S™ forall kel
€ (X)= Sklb R ‘ b
. —R.(X) forall kel

= Ri(X) is the k-th model response at point X
= S.% and S, are the upper and lower bound specifications
= |uband I are index sets (not necessarily disjoint)

= Vector e(X) contains all the error functions with respect to
the design specifications

Dr. J. E. Rayas-Sanchez 23

Minimax Formulations — Unconstrained (cont)

X" =arg mjn U (x)

U (X) = max{...e (X)...}

where
R (X)—S" forall kel™
e.(X)= Sklb R ‘ Ib
« —R.(X) forall kel

Dr. J. E. Rayas-Sanchez 24
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Minimax Formulations — Unconstrained (cont)

X" =arg mjn U ()

U (X) = max{...e (X)...}

Equality specifications S,4 can be implemented as a
combination of upper and lower specifications (454> 0)
2 69 R.(X)—(S;+4S%) forall kel
‘ (51 —-45*)—R, (x) forall kel*
or as a single error function

6, (X)=|R ()~ S*|~ 45 forall kel
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Minimax Formulations — Unconstrained (cont)

X = argm}nmax{...ek(x)...}
where
R (X)—S\" forall ke I™
e (X)= S —R,(x) forall kel®
R (X)— S — 48" forall kel

= R, (X) is the k-th model response at point X
= S.'® and S, are the upper and lower bound specifications
= 58 is an equality specification (£4S5%9)

= |uband I are index sets (not necessarily disjoint)

Dr. J. E. Rayas-Sanchez
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Minimax Formulations — Relative Errors

= Formulation
R (X)-S." forall kel™
e (X)= S, —R.(x) forall kel®
R.(X) -S| - 48 forall ke |

may require the usage of weighting factors

= We can use instead a relative formulation for the error
functions

Dr. J. E. Rayas-Sanchez 27

Minimax Formulations — Relative Errors (cont)

= Using relative error functions (assuming S,*° > 0 and

Sklb >0)
W—l forall ke l™
S;"+¢
e (X)= I—M forall ke "
S, +e¢
_ Qe
IRCI=S ) goratl kel

£

where ¢1s an arbitrary small positive number
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Minimax Formulations — Constrained

= We define an additional optimization variable (ceiling)
X =arg minX,,
subject to

e (X)—X,,, <0

n+l —

where e (x) = R (X)—S," forall kel™
TSP R (x) forall kel®

= Ri(X) is the k-th model response at point X
= S.% and S, are the upper and lower bound specifications

= |uband I are index sets (not necessarily disjoint)
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