CONSTRAINED OPTIMIZATION

Dr. J. E. Rayas-Sánchez
March 6, 2013

Graphical Examples of Constrained Non-Linear Programming Problems

1. Maximizing Power Transfer in a Simple DC Circuit

Consider the following simple DC circuit. Assuming that $V_{C C}=12 \mathrm{~V}$, we want to find the optimal values of R_{S} and R_{L} that maximize the power delivered to the load, keeping the load current at $I_{L}=10$ mA . The minimum and maximum values allowed for R_{S} and R_{L} are 200Ω and $1 \mathrm{~K} \Omega$, respectively.

The standard formulation as a nonlinear programming problem is:

$$
\begin{gathered}
\boldsymbol{x}^{*}=\arg \min _{\boldsymbol{X}} u(\boldsymbol{x}) \\
\text { subject to } \\
\boldsymbol{h}(\boldsymbol{x})=\mathbf{0} \\
\boldsymbol{g}(\boldsymbol{x}) \leq \mathbf{0} \\
\boldsymbol{x}^{\mathrm{lb}} \leq \boldsymbol{x} \leq \boldsymbol{x}^{\mathrm{ub}}
\end{gathered}
$$

where $\boldsymbol{x}, \boldsymbol{x}_{\mathrm{lb}}, \boldsymbol{x}_{\mathrm{ub}} \in \mathfrak{R}^{n}, u: \mathfrak{R}^{n} \rightarrow \mathfrak{R}, \boldsymbol{h}: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{E}, \boldsymbol{g}: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{I}$.
In this example the optimization variables are $\boldsymbol{x}=\left[\begin{array}{ll}R_{S} & R_{L}\end{array}\right]^{\mathrm{T}}$. Since we want to maximize the power at the load, $u(\boldsymbol{x})=-P_{L}$, where $P_{L}=\left(\frac{V_{C C}}{R_{S}+R_{L}}\right)^{2} R_{L}$. Then $u(\boldsymbol{x})=-\left(\frac{12}{x_{1}+x_{2}}\right)^{2} x_{2}$.

Since $I_{L}=10 \mathrm{~mA}$ and $I_{L}=\frac{V_{C C}}{R_{S}+R_{L}}$, then $h(\boldsymbol{x})=\frac{12}{x_{1}+x_{2}}-0.01$.
Finally, $\boldsymbol{x}^{\mathrm{lb}}=\left[\begin{array}{ll}200 & 200\end{array}\right]^{\mathrm{T}}$ and $\boldsymbol{x}^{\mathrm{ub}}=\left[\begin{array}{ll}1000 & 1000\end{array}\right]^{\mathrm{T}}$. It is seen that $n=2, E=1$, and $I=0$.

The optimal solution is $\boldsymbol{x}^{*}=\left[\begin{array}{ll}200 & 1000\end{array}\right]^{\mathrm{T}}$. The optimal response is $P_{L}{ }^{*}=P_{L}\left(\boldsymbol{x}^{*}\right)=0.1 \mathrm{~W}$.

The previous problem can be formulated as an indirect unconstrained problem:
$\mathbf{z}^{*}=\arg \min _{\mathbf{Z}} U(\mathbf{z})$, where
$U(\mathbf{z})=u(\boldsymbol{x})+r_{\mathrm{h}}(h(\boldsymbol{x}))^{2} ; u(\boldsymbol{x})=-\left(\frac{12}{x_{1}+x_{2}}\right)^{2} x_{2} ; h(\boldsymbol{x})=\frac{12}{x_{1}+x_{2}}-0.01$
and $\boldsymbol{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}x_{1}^{\mathrm{lb}}+\left(x_{1}^{\mathrm{ub}}-x_{1}^{\mathrm{lb}}\right)\left(\sin z_{1}\right)^{2} \\ x_{2}^{\mathrm{lb}}+\left(x_{2}^{\mathrm{ub}}-x_{2}^{\mathrm{lb}}\right)\left(\sin z_{2}\right)^{2}\end{array}\right]$ with $\boldsymbol{x}^{\mathrm{lb}}=\left[\begin{array}{ll}200 & 200\end{array}\right]^{\mathrm{T}}$ and $\boldsymbol{x}^{\mathrm{ub}}=\left[\begin{array}{ll}1000 & 1000\end{array}\right]^{\mathrm{T}}$.
The optimal solution found, \mathbf{z}^{*}, depends on the value of the penalty term r_{h}.
$r_{\mathrm{h}}=1$
Objective Function Contours and Constraints

$r_{\mathrm{h}}=10$
Objective Function Contours and Constraints

$r_{\mathrm{h}}=1000$
Objective Function Contours and Constraints

$r_{\mathrm{h}}=10,00$
Objective Function Contours and Constraints

If the starting point is $x_{0}=\left[\begin{array}{cc}800 & 600\end{array}\right]^{\mathrm{T}}$, then $u\left(x_{0}\right)=-0.0441, h\left(x_{0}\right)=-0.0014$. A better way to choose the initial r^{h} is

$$
r_{0}^{\mathrm{h}}=\frac{\left|u\left(\boldsymbol{x}_{0}\right)\right|}{\|\left.\boldsymbol{h}\left(\boldsymbol{x}_{0}\right)\right|_{2} ^{2}}=\frac{0.0441}{(0.0014)^{2}}=21,600
$$

If the starting point is $\boldsymbol{x}_{0}=\left[\begin{array}{ll}20 & 900\end{array}\right]^{\mathrm{T}}$, then $u\left(x_{0}\right)=-0.1531, h\left(x_{0}\right)=-0.003$. A better way to choose the initial r^{h} is

$$
r_{0}^{\mathrm{h}}=\frac{\left|u\left(\boldsymbol{x}_{0}\right)\right|}{\|\left.\boldsymbol{h}\left(\boldsymbol{x}_{0}\right)\right|_{2} ^{2}}=\frac{0.1531}{(0.003)^{2}}=16,531
$$

It is seen that the problem can be solved in successive unconstrained optimizations, increasing the value of r_{h} geometrically at each optimization.
It is also seen that all the local minima of the transformed problem correspond to the same solution in the original problem:
$z_{1}^{*}=-\pi, 0, \pi, \ldots$ and $z_{2}^{*}=-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \ldots$

Objective Function Contours and Constraints

2. Paper Sheet Function

Assume we want to minimize a paper sheet function given by $y=\left(x_{1}-1\right)^{2}+x_{2}-2$, subject to $x_{2}-x_{1}=1$ and $x_{1}+x_{2} \leq 2$. Considering the following standard formulation of a nonlinear programming problem:

$$
\begin{gathered}
\boldsymbol{x}^{*}=\arg \min _{\boldsymbol{x}} u(\boldsymbol{x}) \\
\text { subject to } \\
\boldsymbol{h}(\boldsymbol{x})=\mathbf{0} \\
\boldsymbol{g}(\boldsymbol{x}) \leq \mathbf{0} \\
\boldsymbol{x}^{\mathrm{lb}} \leq \boldsymbol{x} \leq \boldsymbol{x}^{\mathrm{ub}}
\end{gathered}
$$

where $\boldsymbol{x}, \boldsymbol{x}_{\mathrm{lb}}, \boldsymbol{x}_{\mathrm{ub}} \in \mathfrak{R}^{n}, u: \mathfrak{R}^{n} \rightarrow \mathfrak{R}, \boldsymbol{h}: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{E}, \boldsymbol{g}: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{I}$
Hence,

$$
\begin{aligned}
& u(\boldsymbol{x})=\left(x_{1}-1\right)^{2}+x_{2}-2 \\
& h(\boldsymbol{x})=x_{2}-x_{1}-1 \\
& g(\boldsymbol{x})=x_{1}+x_{2}-2
\end{aligned}
$$

$n=2, E=1$, and $I=1$, with no box constraints.

The optimal solution is $\boldsymbol{x}^{*}=\left[\begin{array}{ll}0.5 & 1.5\end{array}\right]^{\mathrm{T}}$. It is seen that the inequality constraint $g(x)$ does not affect the optimal solution \boldsymbol{x}^{*} due to the form of the objective function $u(\boldsymbol{x})$.
This problem can also be formulated as an indirect unconstrained optimization problem,
$\boldsymbol{x}^{*}=\arg \min _{\boldsymbol{X}} U(\boldsymbol{x})$ where $U(\boldsymbol{x})=u(\boldsymbol{x})+r_{\mathrm{h}}(h(\boldsymbol{x}))^{2}+r_{\mathrm{g}}(\max \{0, g(\boldsymbol{x})\})^{2}$
The optimal solution found, \boldsymbol{x}^{*}, depends on the values of the penalty terms r_{h} and r_{g}.

$r_{\mathrm{h}}=3, r_{\mathrm{g}}=3$
Objective Function Contours and Constraints

$r_{\mathrm{h}}=10, r_{\mathrm{g}}=10$
Objective Function Contours and Constraints

$r_{\mathrm{h}}=1, r_{\mathrm{g}}=1$
Objective Function Contours and Constraints

$r_{\mathrm{h}}=3, r_{\mathrm{g}}=3$ (zooming in)
Objective Function Contours and Constraints

$r_{\mathrm{h}}=10, r_{\mathrm{g}}=10$ (zooming in)
Objective Function Contours and Constraints

This case illustrates the problem of over-emphasizing the constraints when the selected penalty terms are too large.

The above contours confirm that, in this particular case, the inequality constraint $g(x)$ does not affect the optimal solution \boldsymbol{x}^{*} due to the form of the objective function $u(x)$. It is also seen that, if r_{h} is too large, the equality constraint $h(x)$ becomes dominant.

