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CONSTRAINED OPTIMIZATION 

Dr. J. E. Rayas-Sánchez 
March 6, 2013 

GRAPHICAL EXAMPLES OF CONSTRAINED NON-LINEAR PROGRAMMING PROBLEMS 

1. Maximizing Power Transfer in a Simple DC Circuit  

Consider the following simple DC circuit. Assuming that VCC = 12 V, we want to find the optimal 
values of RS and RL that maximize the power delivered to the load, keeping the load current at IL = 10 
mA. The minimum and maximum values allowed for RS and RL are 200Ω and 1KΩ, respectively.  

 

The standard formulation as a nonlinear programming problem is: 
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where x, xlb, xub ∈ ℜn, u: ℜn→ℜ, h: ℜn→ℜE, g: ℜn→ℜI . 

In this example the optimization variables are T][ LS RR=x . Since we want to maximize the power at 
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Finally, Tlb ]200200[=x  and Tub ]10001000[=x . It is seen that n = 2, E = 1, and I = 0. 

The optimal solution is T* ]1000200[=x . The optimal response is == )( ** xLL PP  0.1 W. 
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The previous problem can be formulated as an indirect unconstrained problem: 
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x  with Tlb ]200200[=x  and Tub ]10001000[=x . 

The optimal solution found, z*, depends on the value of the penalty term rh. 

 
rh  = 1 rh = 10 

rh  = 100 rh  = 1000 
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rh  = 10,00  

It is seen that the problem can be solved in 
successive unconstrained optimizations, 
increasing the value of rh geometrically at each 
optimization.  

It is also seen that all the local minima of the 
transformed problem correspond to the same 
solution in the original problem: 
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If the starting point is x0 = [800   600]T, then 
u(x0) = − 0.0441, h(x0) = −0.0014. A better way to 
choose the initial rh is 
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If the starting point is x0 = [20   900]T, then    
u(x0) = − 0.1531, h(x0) = −0.003. A better way to 
choose the initial rh is 
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2. Paper Sheet Function 

Assume we want to minimize a paper sheet function given by 2)1( 2
2

1 −+−= xxy , subject to 

112 =− xx  and 221 ≤+ xx . Considering the following standard formulation of a nonlinear 
programming problem: 
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where x, xlb, xub ∈ ℜn, u: ℜn→ℜ, h: ℜn→ℜE, g: ℜn→ℜI 

Hence, 
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2)( 21 −+= xxg x  

n = 2, E = 1, and I = 1, with no box constraints. 

The optimal solution is T* ]5.15.0[=x . It is seen that the inequality constraint g(x) does not affect the 
optimal solution x* due to the form of the objective function u(x). 

This problem can also be formulated as an indirect unconstrained optimization problem, 

)(minarg* xxx U=  where  2
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The optimal solution found, x*, depends on the values of the penalty terms rh and rg. 
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rh  = 0.1, rg  = 0.1 rh  = 1, rg  = 1 

rh  = 3, rg  = 3 rh  = 3, rg  = 3 (zooming in) 

 
rh  = 10, rg  = 10 rh  = 10, rg  = 10 (zooming in) 

 

This case illustrates the problem of over-emphasizing the constraints when the selected penalty terms 
are too large.  
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rh  = 1, rg  = 0 rh  = 3, rg  = 0 

rh  = 5, rg  = 0 rh  = 7, rg  = 0 (zooming in) 

rh  = 10, rg  = 0 rh  = 40, rg  = 0 (zooming in) 

The above contours confirm that, in this particular case, the inequality constraint g(x) does not affect 
the optimal solution x* due to the form of the objective function u(x). It is also seen that, if rh is too 
large, the equality constraint h(x) becomes dominant. 
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