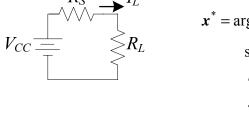
CONSTRAINED OPTIMIZATION

GRAPHICAL EXAMPLES OF CONSTRAINED NON-LINEAR PROGRAMMING PROBLEMS

1. Maximizing Power Transfer in a Simple DC Circuit

Consider the following simple DC circuit. Assuming that $V_{CC} = 12$ V, we want to find the optimal values of R_s and R_L that maximize the power delivered to the load, keeping the load current at $I_L = 10$ mA. The minimum and maximum values allowed for R_s and R_L are 200 Ω and 1K Ω , respectively.

The standard formulation as a nonlinear programming problem is:



$$x^* = \arg \min_{x} u(x)$$

subject to
$$h(x) = 0$$

$$g(x) \le 0$$

$$x^{lb} \le x \le x^{ub}$$

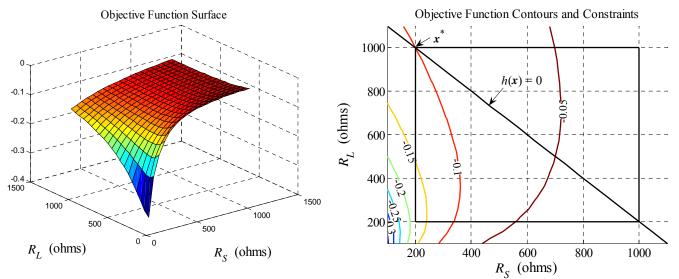
where $\boldsymbol{x}, \boldsymbol{x}_{\text{lb}}, \boldsymbol{x}_{\text{ub}} \in \mathfrak{R}^{n}, u: \mathfrak{R}^{n} \rightarrow \mathfrak{R}, \boldsymbol{h}: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{E}, \boldsymbol{g}: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{I}$.

In this example the optimization variables are $\mathbf{x} = \begin{bmatrix} R_s & R_L \end{bmatrix}^T$. Since we want to maximize the power at

the load,
$$u(\mathbf{x}) = -P_L$$
, where $P_L = \left(\frac{V_{CC}}{R_S + R_L}\right)^2 R_L$. Then $u(\mathbf{x}) = -\left(\frac{12}{x_1 + x_2}\right)^2 x_2$.

Since $I_L = 10 \text{ mA}$ and $I_L = \frac{V_{CC}}{R_S + R_L}$, then $h(\mathbf{x}) = \frac{12}{x_1 + x_2} - 0.01$.

Finally, $\mathbf{x}^{1b} = [200 \ 200]^{T}$ and $\mathbf{x}^{ub} = [1000 \ 1000]^{T}$. It is seen that n = 2, E = 1, and I = 0.



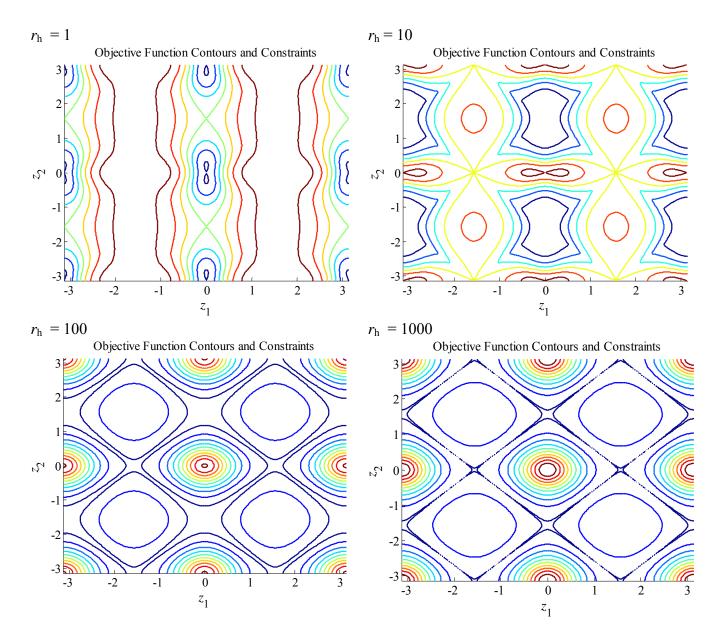
The optimal solution is $\mathbf{x}^* = \begin{bmatrix} 200 & 1000 \end{bmatrix}^T$. The optimal response is $P_L^* = P_L(\mathbf{x}^*) = 0.1$ W.

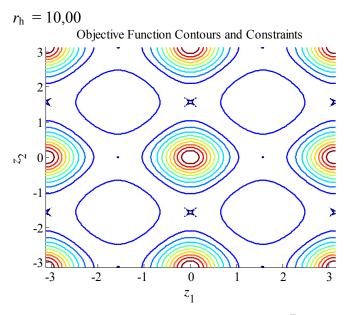
The previous problem can be formulated as an indirect unconstrained problem:

$$z^* = \arg\min_{z} U(z) \text{, where}$$

$$U(z) = u(x) + r_{h}(h(x))^{2}; \quad u(x) = -\left(\frac{12}{x_{1} + x_{2}}\right)^{2} x_{2}; \quad h(x) = \frac{12}{x_{1} + x_{2}} - 0.01$$
and $x = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} x_{1}^{\text{lb}} + (x_{1}^{\text{ub}} - x_{1}^{\text{lb}})(\sin z_{1})^{2} \\ x_{2}^{\text{lb}} + (x_{2}^{\text{ub}} - x_{2}^{\text{lb}})(\sin z_{2})^{2} \end{bmatrix} \text{ with } x^{\text{lb}} = \begin{bmatrix} 200 \quad 200 \end{bmatrix}^{\text{T}} \text{ and } x^{\text{ub}} = \begin{bmatrix} 1000 \quad 1000 \end{bmatrix}^{\text{T}}.$

The optimal solution found, z^* , depends on the value of the penalty term $r_{\rm h}$.





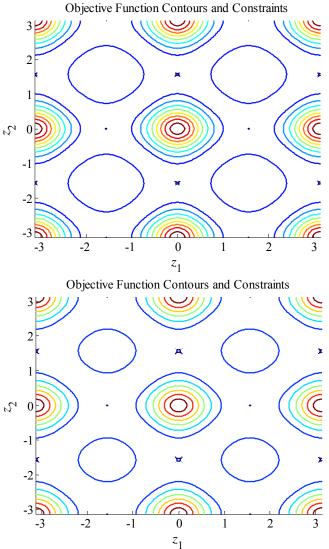
If the starting point is $\mathbf{x}_0 = \begin{bmatrix} 800 & 600 \end{bmatrix}^T$, then $u(\mathbf{x}_0) = -0.0441$, $h(\mathbf{x}_0) = -0.0014$. A better way to choose the initial r^h is

$$r_0^{\rm h} = \frac{|u(\boldsymbol{x}_0)|}{\|\boldsymbol{h}(\boldsymbol{x}_0)\|_2^2} = \frac{0.0441}{(0.0014)^2} = 21,600$$

It is seen that the problem can be solved in successive unconstrained optimizations, increasing the value of r_h geometrically at each optimization.

It is also seen that all the local minima of the transformed problem correspond to the same solution in the original problem:

 $z_1^* = -\pi, 0, \pi, \dots$ and $z_2^* = -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \dots$



If the starting point is $\mathbf{x}_0 = \begin{bmatrix} 20 & 900 \end{bmatrix}^T$, then $u(\mathbf{x}_0) = -0.1531$, $h(\mathbf{x}_0) = -0.003$. A better way to choose the initial r^h is

$$r_0^{\rm h} = \frac{|u(\boldsymbol{x}_0)|}{\|\boldsymbol{h}(\boldsymbol{x}_0)\|_2^2} = \frac{0.1531}{(0.003)^2} = 16,531$$

2. Paper Sheet Function

Assume we want to minimize a paper sheet function given by $y = (x_1 - 1)^2 + x_2 - 2$, subject to $x_2 - x_1 = 1$ and $x_1 + x_2 \le 2$. Considering the following standard formulation of a nonlinear programming problem:

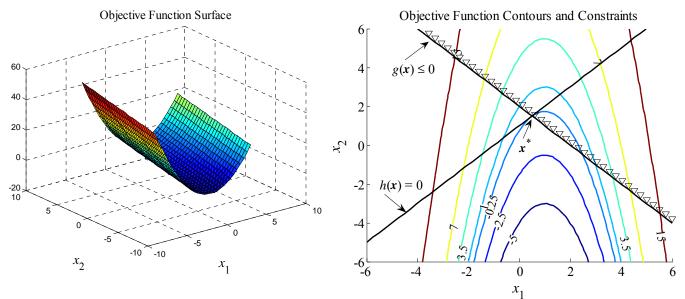
 $x^* = \arg\min_{x} u(x)$ subject to h(x) = 0 $g(x) \le 0$ $x^{lb} \le x \le x^{ub}$

where $\boldsymbol{x}, \boldsymbol{x}_{\text{lb}}, \boldsymbol{x}_{\text{ub}} \in \mathfrak{R}^{n}, u: \mathfrak{R}^{n} \rightarrow \mathfrak{R}, \boldsymbol{h}: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{E}, \boldsymbol{g}: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{I}$

Hence,

 $u(\mathbf{x}) = (x_1 - 1)^2 + x_2 - 2$ $h(\mathbf{x}) = x_2 - x_1 - 1$ $g(\mathbf{x}) = x_1 + x_2 - 2$

n = 2, E = 1, and I = 1, with no box constraints.

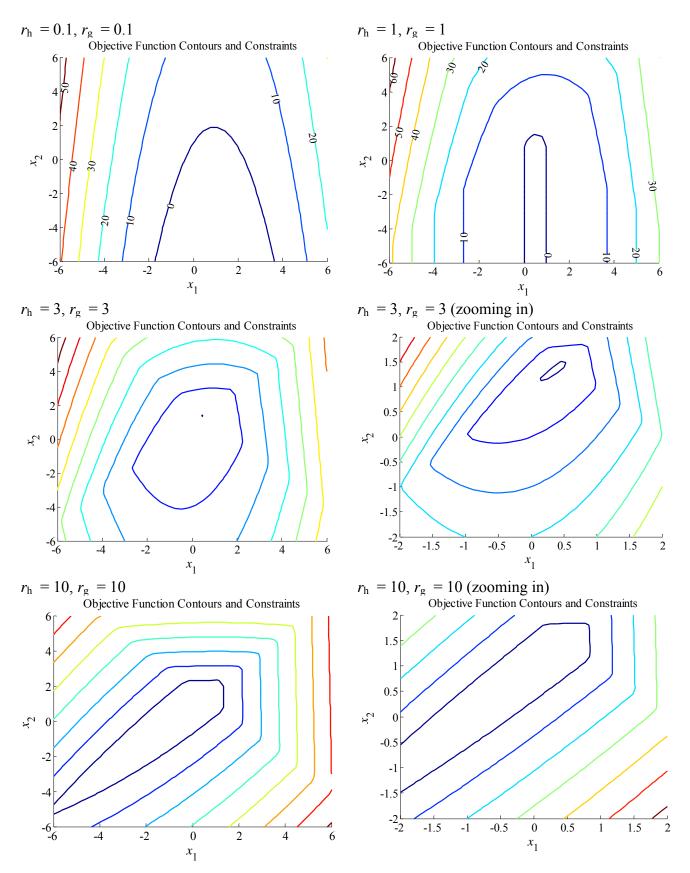


The optimal solution is $\mathbf{x}^* = \begin{bmatrix} 0.5 & 1.5 \end{bmatrix}^T$. It is seen that the inequality constraint $g(\mathbf{x})$ does not affect the optimal solution \mathbf{x}^* due to the form of the objective function $u(\mathbf{x})$.

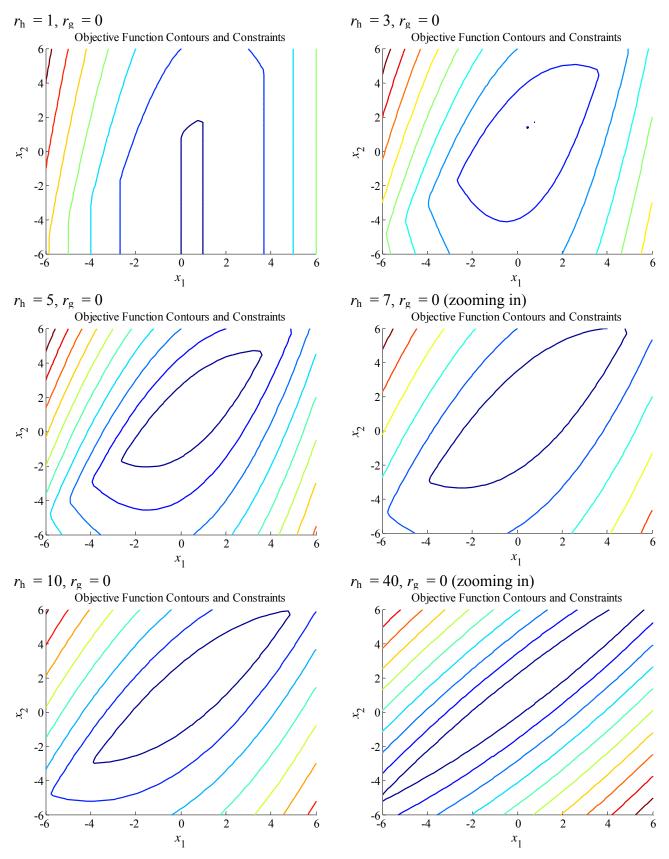
This problem can also be formulated as an indirect unconstrained optimization problem,

$$x^* = \arg\min_{x} U(x)$$
 where $U(x) = u(x) + r_h(h(x))^2 + r_g(\max\{0, g(x)\})^2$

The optimal solution found, \boldsymbol{x}^* , depends on the values of the penalty terms $r_{\rm h}$ and $r_{\rm g}$.



This case illustrates the problem of over-emphasizing the constraints when the selected penalty terms are too large.



The above contours confirm that, in this particular case, the inequality constraint g(x) does not affect the optimal solution x^* due to the form of the objective function u(x). It is also seen that, if r_h is too large, the equality constraint h(x) becomes dominant.