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THE CONJUGATE GRADIENT METHOD ON QUADRATIC FUNCTIONS

Consider a quadratic objective function u: R"—NR given by
1
u(x)=5xTQx+bTx+c (1)
where x € R” contains the n optimization variables, and Q@ € R"™" is a positive definite matrix. We want
to solve

x" =argminu(x) (2)
x

The optimal solution x* can be found by making Vu(x")=0. From (1)
Vu(x)=0x+b 3)

The conjugate gradient method imposes conjugate search directions, which means that any two search
directions d; and dy satisfy d;'Qdi = 0 for j # k, and the sequence of directions do, d,..., di, with k< n—1,
are linearly independent.

If an exact line search is realized at each iteration, the following unidimensional problem is solved at the
i-th iteration

o; =argminu(x; +ad;) =argminu(a) 4)
a a
where x;, di € R" are the current iterate and the current search direction, respectively, and o; € ‘R is the
one-dimensional minimizer at the i-th iteration. Once ¢; is found, the next iterate is calculated by
X =X +ad, (5)

Applying the chain rule on the scalar unidimensional function u( ),

du _ Vu(x)" dx _ (Ox+b)'d, =d'Qx+d'b (6)
da da
Solving problem (4) implies
j” =0=(d;Ox+d'b)  =d;Q(x;+ad)+d'b=0a,d Qd,+d Ox,+d b (7
Al y—q, a=a;

Solving (7) for ¢; and using (3),

a. = _diT(Qxi +b) _ _diTV”(xi)

: 8
L di0d, d;Qd, ®

An exact solution to (4) at the i-th iteration is given by (8). Since @ is positive definite, hence diTQd,- >

0, and it is seen from (8) that if ¢; > 0, then diTVu(xi) < 0, which ensures that d; is a down-hill direction.
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Since the sequence of directions do, d,..., di are Q-conjugate, with Q positive definite, then the linear
combination of n search directions aodo + a1d: +...+ a,-1d,-1 expands the whole space R”. Hence, we can
ensure that

*

x —x,=aydy+ad +...+a, d,_, 9)
for some set of non-zero real coefficients {ao, ai,..., an-1}.
On the other hand, from (5) we know that the i-th conjugate gradient iterate is given by
x,=x,+ody+od +...+a,_d,_, (10)

From (9) and (10), if we prove that ax = ax for k=0, 1,... n—1, then the optimal solution must be obtained
in n iterations, that is, x, = x".

Pre-multiplying (9) by d;"Q, with i < n—1, and considering that all directions are Q-conjugate,

dQ(x" —x,)=d, Qad, (11)
Solving (11) for a;,
a; = d’Ti(TxQ:l_IxO) (12)
Similarly, pre-multiplying (10) by d;'Q, and considering that all directions are Q-conjugate,
d;' Q(x, ~ x,) =0 (13)
Since
x,—x,=(x,—x,)+(x;,—x;) (14)

Pre-multiplying (14) by d;'Q, and using (11) and (13),
d;'Q(x, -~ x,) =d; Q(x, - x;) (15)
Substituting x, = x" in (15), and using (3),
dQ(x" —x0)=d, Q(x" — x;) =d," [(Vu(x") = b) - (Vu(x,) — b)] = —d, Vu(x;) (16)
Substituting (16) in (12),

L 400 —xy) _ —d,'Vu(x,)
- d 04, d;' Qd,

(17)

Since (17) is equal to (8), then ax = o for k =0, 1,... n—1, which proves that the conjugate gradient
optimization method solves a quadratic objective function in 7 iterations if an exact line search is realized
at each iteration.
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