UNCONSTRAINED MULTIDIMENSIONAL METHODS

Dr. J. E. Rayas-Sánchez

The Conjugate Gradient Method on Quadratic Functions

Consider a quadratic objective function $u: \mathfrak{R}^{n} \rightarrow \mathfrak{R}$ given by

$$
\begin{equation*}
u(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{x}+\boldsymbol{b}^{\mathrm{T}} \boldsymbol{x}+c \tag{1}
\end{equation*}
$$

where $\boldsymbol{x} \in \mathfrak{R}^{n}$ contains the n optimization variables, and $\boldsymbol{Q} \in \mathfrak{R}^{n \times n}$ is a positive definite matrix. We want to solve

$$
\begin{equation*}
\boldsymbol{x}^{*}=\arg \min _{\boldsymbol{x}} u(\boldsymbol{x}) \tag{2}
\end{equation*}
$$

The optimal solution \boldsymbol{x}^{*} can be found by making $\nabla u\left(\boldsymbol{x}^{*}\right)=\mathbf{0}$. From (1)

$$
\begin{equation*}
\nabla u(\boldsymbol{x})=\boldsymbol{Q} \boldsymbol{x}+\boldsymbol{b} \tag{3}
\end{equation*}
$$

The conjugate gradient method imposes conjugate search directions, which means that any two search directions \boldsymbol{d}_{j} and \boldsymbol{d}_{k} satisfy $\boldsymbol{d}_{j}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{d}_{k}=0$ for $j \neq k$, and the sequence of directions $\boldsymbol{d}_{0}, \boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{k}$, with $k \leq n-1$, are linearly independent.
If an exact line search is realized at each iteration, the following unidimensional problem is solved at the i-th iteration

$$
\begin{equation*}
\alpha_{i}=\arg \min _{\alpha} u\left(\boldsymbol{x}_{i}+\alpha \boldsymbol{d}_{i}\right)=\arg \min _{\alpha} u(\alpha) \tag{4}
\end{equation*}
$$

where $\boldsymbol{x}_{i}, \boldsymbol{d}_{i} \in \mathfrak{R}^{n}$ are the current iterate and the current search direction, respectively, and $\alpha_{i} \in \mathfrak{R}$ is the one-dimensional minimizer at the i-th iteration. Once α_{i} is found, the next iterate is calculated by

$$
\begin{equation*}
\boldsymbol{x}_{i+1}=\boldsymbol{x}_{i}+\alpha_{i} \boldsymbol{d}_{i} \tag{5}
\end{equation*}
$$

Applying the chain rule on the scalar unidimensional function $u(\alpha)$,

$$
\begin{equation*}
\frac{d u}{d \alpha}=\nabla u(\boldsymbol{x})^{\mathrm{T}} \frac{d \boldsymbol{x}}{d \alpha}=(\boldsymbol{Q} \boldsymbol{x}+\boldsymbol{b})^{\mathrm{T}} \boldsymbol{d}_{i}=\boldsymbol{d}_{i}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{x}+\boldsymbol{d}_{i}^{\mathrm{T}} \boldsymbol{b} \tag{6}
\end{equation*}
$$

Solving problem (4) implies

$$
\begin{equation*}
\left.\frac{d u}{d \alpha}\right|_{\alpha=\alpha_{i}}=0=\left.\left(\boldsymbol{d}_{i}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{x}+\boldsymbol{d}_{i}^{\mathrm{T}} \boldsymbol{b}\right)\right|_{\alpha=\alpha_{i}}=\boldsymbol{d}_{i}^{\mathrm{T}} \boldsymbol{Q}\left(\boldsymbol{x}_{i}+\alpha_{i} \boldsymbol{d}_{i}\right)+\boldsymbol{d}_{i}^{\mathrm{T}} \boldsymbol{b}=\alpha_{i} \boldsymbol{d}_{i}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{d}_{i}+\boldsymbol{d}_{i}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{x}_{i}+\boldsymbol{d}_{i}^{\mathrm{T}} \boldsymbol{b} \tag{7}
\end{equation*}
$$

Solving (7) for α_{i} and using (3),

$$
\begin{equation*}
\alpha_{i}=\frac{-\boldsymbol{d}_{i}^{\mathrm{T}}\left(\boldsymbol{Q} \boldsymbol{x}_{i}+\boldsymbol{b}\right)}{\boldsymbol{d}_{i}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{d}_{i}}=\frac{-\boldsymbol{d}_{i}^{\mathrm{T}} \nabla u\left(\boldsymbol{x}_{i}\right)}{\boldsymbol{d}_{i}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{d}_{i}} \tag{8}
\end{equation*}
$$

An exact solution to (4) at the i-th iteration is given by (8). Since \boldsymbol{Q} is positive definite, hence $\boldsymbol{d}_{i}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{d}_{i}>$ 0 , and it is seen from (8) that if $\alpha_{i}>0$, then $\boldsymbol{d}_{i}{ }^{\mathrm{T}} \nabla u\left(\boldsymbol{x}_{i}\right)<0$, which ensures that \boldsymbol{d}_{i} is a down-hill direction.

Since the sequence of directions $\boldsymbol{d}_{0}, \boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{k}$ are Q-conjugate, with \boldsymbol{Q} positive definite, then the linear combination of n search directions $a_{0} \boldsymbol{d}_{0}+a_{1} \boldsymbol{d}_{1}+\ldots+a_{n-1} \boldsymbol{d}_{n-1}$ expands the whole space \mathfrak{R}^{n}. Hence, we can ensure that

$$
\begin{equation*}
\boldsymbol{x}^{*}-\boldsymbol{x}_{0}=a_{0} \boldsymbol{d}_{0}+a_{1} \boldsymbol{d}_{1}+\ldots+a_{n-1} \boldsymbol{d}_{n-1} \tag{9}
\end{equation*}
$$

for some set of non-zero real coefficients $\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$.
On the other hand, from (5) we know that the i-th conjugate gradient iterate is given by

$$
\begin{equation*}
\boldsymbol{x}_{i}=\boldsymbol{x}_{0}+\alpha_{0} \boldsymbol{d}_{0}+\alpha_{1} \boldsymbol{d}_{1}+\ldots+\alpha_{i-1} \boldsymbol{d}_{i-1} \tag{10}
\end{equation*}
$$

From (9) and (10), if we prove that $a_{k}=\alpha_{k}$ for $k=0,1, \ldots n-1$, then the optimal solution must be obtained in n iterations, that is, $\boldsymbol{x}_{n}=\boldsymbol{x}^{*}$.

Pre-multiplying (9) by $\boldsymbol{d}_{i}^{\mathrm{T}} \boldsymbol{Q}$, with $i \leq n-1$, and considering that all directions are Q-conjugate,

$$
\begin{equation*}
\boldsymbol{d}_{i}{ }^{\mathrm{T}} \boldsymbol{Q}\left(\boldsymbol{x}^{*}-\boldsymbol{x}_{0}\right)=\boldsymbol{d}_{i}^{\mathrm{T}} \boldsymbol{Q} a_{i} \boldsymbol{d}_{i} \tag{11}
\end{equation*}
$$

Solving (11) for a_{i},

$$
\begin{equation*}
a_{i}=\frac{\boldsymbol{d}_{i}^{\mathrm{T}} \boldsymbol{Q}\left(\boldsymbol{x}^{*}-\boldsymbol{x}_{0}\right)}{\boldsymbol{d}_{i}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{d}_{i}} \tag{12}
\end{equation*}
$$

Similarly, pre-multiplying (10) by $\boldsymbol{d}_{i}{ }^{\mathrm{T}} \boldsymbol{Q}$, and considering that all directions are Q-conjugate,

$$
\begin{equation*}
\boldsymbol{d}_{i}{ }^{\mathrm{T}} \boldsymbol{Q}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{0}\right)=0 \tag{13}
\end{equation*}
$$

Since

$$
\begin{equation*}
x_{n}-x_{0}=\left(x_{n}-x_{i}\right)+\left(x_{i}-x_{0}\right) \tag{14}
\end{equation*}
$$

Pre-multiplying (14) by $\boldsymbol{d}_{i}{ }^{\mathrm{T}} \boldsymbol{Q}$, and using (11) and (13),

$$
\begin{equation*}
\boldsymbol{d}_{i}{ }^{\mathrm{T}} \boldsymbol{Q}\left(\boldsymbol{x}_{n}-\boldsymbol{x}_{0}\right)=\boldsymbol{d}_{i}^{\mathrm{T}} \boldsymbol{Q}\left(\boldsymbol{x}_{n}-\boldsymbol{x}_{i}\right) \tag{15}
\end{equation*}
$$

Substituting $\boldsymbol{x}_{n}=\boldsymbol{x}^{*}$ in (15), and using (3),

$$
\begin{equation*}
\boldsymbol{d}_{i}^{\mathrm{T}} \boldsymbol{Q}\left(\boldsymbol{x}^{*}-\boldsymbol{x}_{0}\right)=\boldsymbol{d}_{i}^{\mathrm{T}} \boldsymbol{Q}\left(\boldsymbol{x}^{*}-\boldsymbol{x}_{i}\right)=\boldsymbol{d}_{i}^{\mathrm{T}}\left[\left(\nabla u\left(\boldsymbol{x}^{*}\right)-\boldsymbol{b}\right)-\left(\nabla u\left(\boldsymbol{x}_{i}\right)-\boldsymbol{b}\right)\right]=-\boldsymbol{d}_{i}^{\mathrm{T}} \nabla u\left(\boldsymbol{x}_{i}\right) \tag{16}
\end{equation*}
$$

Substituting (16) in (12),

$$
\begin{equation*}
a_{i}=\frac{\boldsymbol{d}_{i}^{\mathrm{T}} \boldsymbol{Q}\left(\boldsymbol{x}^{*}-\boldsymbol{x}_{0}\right)}{\boldsymbol{d}_{i}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{d}_{i}}=\frac{-\boldsymbol{d}_{i}^{\mathrm{T}} \nabla u\left(\boldsymbol{x}_{i}\right)}{\boldsymbol{d}_{i}{ }^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{d}_{i}} \tag{17}
\end{equation*}
$$

Since (17) is equal to (8), then $a_{k}=\alpha_{k}$ for $k=0,1, \ldots n-1$, which proves that the conjugate gradient optimization method solves a quadratic objective function in n iterations if an exact line search is realized at each iteration.

