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THE CONJUGATE GRADIENT METHOD ON QUADRATIC FUNCTIONS 

Consider a quadratic objective function u: ℜn→ℜ given by  
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where x ∈ ℜn contains the n optimization variables, and Q ∈ ℜn×n is a positive definite matrix. We want 
to solve 
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The optimal solution x* can be found by making 0=∇ )( *xu . From (1) 
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The conjugate gradient method imposes conjugate search directions, which means that any two search 
directions dj and dk satisfy dj

TQdk = 0 for j ≠ k, and the sequence of directions d0, d1,…, dk, with k ≤ n−1, 
are linearly independent. 
If an exact line search is realized at each iteration, the following unidimensional problem is solved at the 
i-th iteration 
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where xi, di ∈ ℜn are the current iterate and the current search direction, respectively, and αi ∈ ℜ is the 
one-dimensional minimizer at the i-th iteration. Once αi is found, the next iterate is calculated by  
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Applying the chain rule on the scalar unidimensional function u(α),  
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Solving problem (4) implies 
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Solving (7) for αi and using (3),  
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An exact solution to (4) at the i-th iteration is given by (8). Since Q is positive definite, hence ii Qdd T  > 

0, and it is seen from (8) that if αi > 0, then 0)(T <∇ ii u xd , which ensures that di is a down-hill direction. 
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Since the sequence of directions d0, d1,…, dk are Q-conjugate, with Q positive definite, then the linear 
combination of n search directions a0d0 + a1d1 +…+ an−1dn−1 expands the whole space ℜn. Hence, we can 
ensure that 
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for some set of non-zero real coefficients {a0, a1,…, an−1}. 
On the other hand, from (5) we know that the i-th conjugate gradient iterate is given by 
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From (9) and (10), if we prove that ak = αk for k = 0, 1,… n−1, then the optimal solution must be obtained 
in n iterations, that is, xn = x*. 

Pre-multiplying (9) by di
TQ, with i ≤ n−1, and considering that all directions are Q-conjugate, 
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Solving (11) for ai, 
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Similarly, pre-multiplying (10) by di
TQ, and considering that all directions are Q-conjugate, 
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Since 
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Pre-multiplying (14) by di
TQ, and using (11) and (13), 
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Substituting xn = x* in (15), and using (3), 
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Substituting (16) in (12), 
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Since (17) is equal to (8), then ak = αk for k = 0, 1,… n−1, which proves that the conjugate gradient 
optimization method solves a quadratic objective function in n iterations if an exact line search is realized 
at each iteration. 


