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Abstract

A powerful concept in neuromodeling of microwave circuits based on Space Mapping technology is described.  The ability of Artificial 
Neural Networks (ANN) to model high-dimensional and highly nonlinear problems is exploited in the implementation of the Space 
Mapping concept.  By taking advantage of the vast set of empirical models already available for many microwave structures, Space
Mapping based neuromodels decrease the number of EM simulations for training, improve the generalization and extrapolation 
performance and reduce the complexity of the ANN topology with respect to the conventional neuromodeling approach.

Five innovative techniques are proposed to create Space Mapping based neuromodels for microwave circuits: Space Mapped
Neuromodeling (SMN), Frequency-Dependent Space Mapped Neuromodeling (FDSMN), Frequency Space Mapped Neuromodeling
(FSMN), Frequency Mapped Neuromodeling (FMN) and Frequency Partial-Space Mapped Neuromodeling (FPSM).  Excepting SMN, all 
these approaches establish a frequency-sensitive neuromapping to expand the frequency region of accuracy of the empirical models 
already available for microwave components that were developed using quasi-static analysis.

We contrast our approach with the conventional neuromodeling approach employed in the microwave arena, as well as with other state-of-
the-art neuromodeling techniques.  We use Huber optimization to efficiently train the simple ANN that implements the mapping in our 
SM-based neuromodels.

The five space mapping based neuromodeling techniques are illustrated by two case studies: a microstrip right angle bend and a high-
temperature superconducting (HTS) quarter-wave parallel coupled-line microstrip filter.
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Artificial Neural Networks (ANN) Modeling

Artificial Neural Networks are suitable in modeling high-dimensional 
and highly nonlinear problems

ANN models are computationally efficient and more accurate than empirical models

multilayer feedforward networks can approximate any measurable function 
to any desired level of accuracy, provided a deterministic relationship
between input and target exists (White et al., 1992)

ANNs that are too small cannot approximate the desired input-output relationship

ANNs with too many internal parameters perform correctly in the learning 
set, but give poor generalization ability

ANNs are suitable models for microwave circuit optimization and 
statistical design (Zaabab, Zhang and Nakhla, 1995, Gupta et al., 1996, 
Burrascano and Mongiardo, 1998, 1999)
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Conventional ANN Modeling Approach
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many fine model simulations are usually 
needed

the number of learning samples needed 
to approximate a function grows 
exponentially with the ratio of the 
dimensionality to the function’s degree 
of smoothness (Stone, 1982)

the reliability of multi-layer perceptrons
for extrapolation is poor

introducing knowledge can alleviate 
these limitations
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Hybrid “∆S” EM-ANN Neuromodeling Concept
(Gupta et al., 1996)

coarse
model

ANN

+

EM-ANN model

∆R

Rc

≈ Rf

ω

xf
coarse
model

ANN

fine
model

ω Rf

Rc

∆R

≈ ∆R

xf

w

Simulation Optimization Systems Research Laboratory
McMaster University



PKI Neuromodeling Concept
(Gupta et al., 1996)
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KBNN Neuromodeling Concept
(Zhang et al., 1997)
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Exploiting Space Mapping for Neuromodeling
(Bandler et. al., 1999)
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Space Mapping Based Neuromodeling
(Bandler et. al., 1999)
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Neuromappings
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Mapped neuromapping                   
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Neuromappings (continued)
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Neuromappings (continued)

Frequency Partial-Space 
Mapped neuromapping
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it is not always necessary to 
map the whole set of design 
parameters

coarse model sensitivities can 
be used to select the mapped 
parameters
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r is the number of responses in the model

P is the neuromapping function and w contains the free parameters of the ANN

2n+1 is the number of training base points and Fp is the number of frequency points

Huber optimization is used to solve this problem

Training the SM-Based Neuromodel 
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Starting Point and Learning Samples

we chose a unit mapping (xc ≈ x f and ωc ≈ ω) as the starting point for the optimization 
problem

2n+1 points are used for a microwave circuit with n design parameters

xf 1

xf 2

xf 3
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Microstrip Right Angle Bend

region of interest
20mil ≤ W ≤ 30mil
8mil ≤ H ≤ 16mil

8 ≤ εr ≤ 10
1GHz ≤ ω ≤ 41GHz

“coarse” model: equivalent circuit 
model (Gupta, Garg and Bahl, 1979)

“fine” model: Sonnet’s em

learning set: 7 base points with “star” 
distribution

εr

W

W

H
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Microstrip Right Angle Bend Coarse Model Errors

comparison between em and coarse model at 50 random test points
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SM Neuromodel for the Right Angle Bend (3LP:3-6-3)
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SM Neuromodel Results for the Right Angle Bend

comparison between em and the SM neuromodel
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FDSM Neuromodel for the Right Angle Bend (3LP:4-7-3)
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ANN
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FDSM Neuromodel Results for the Right Angle Bend

comparison between em and the FDSM neuromodel
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FSM Neuromodel for the Right Angle Bend (3LP:4-8-4)
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FSM Neuromodel Results for the Right Angle Bend

comparison between em and the FSM neuromodel
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Implementations in NeuroModeler

SM based neuromodels of several 
microstrip circuits have been 
developed using NeuroModeler
version 1.2b (1999)

they are entered into HP ADS 
version 1.1 (1999) as library 
components through an ADS 
plugin module
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HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter
(Westinghouse, 1993)

region of interest

175mil ≤ L1 ≤ 185mil
190mil ≤ L2 ≤ 210mil
175mil ≤ L3 ≤ 185mil

18mil ≤ S1 ≤ 22mil
75mil ≤ S2 ≤ 85mil
70mil ≤ S3 ≤ 90mil

3.901GHz ≤ ω ≤ 4.161GHz

L0 = 50mil
H = 20mil
W = 7mil

εr = 23.425
loss tangent = 3×10−5
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HTS Microstrip Filter: Fine and Coarse Models

coarse model:

OSA90/hope built-in models of open 
circuits, microstrip lines and coupled 
microstrip lines

fine model: 

Sonnet’s em with high resolution 
grid
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HTS Filter Responses Before Neuromodeling

responses using em (•) and OSA90/hope (−) at three learning and three test points

3.901 3.966 4.031 4.096 4.161
frequency (GHz)

-60

-50

-40

-30

-20

-10

0

|S
21

|

3.901 3.966 4.031 4.096 4.161
frequency (GHz)

-60

-50

-40

-30

-20

-10

0

|S
21

|

3.901 3.966 4.031 4.096 4.161
frequency (GHz)

-60

-50

-40

-30

-20

-10

0

|S
21

|

3.901 3.966 4.031 4.096 4.161
frequency (GHz)

-60

-50

-40

-30

-20

-10

0

|S
21

|

3.901 3.966 4.031 4.096 4.161
frequency (GHz)

-60

-50

-40

-30

-20

-10

0

|S
21

|

3.901 3.966 4.031 4.096 4.161
frequency (GHz)

-60

-50

-40

-30

-20

-10

0

|S
21

|

Simulation Optimization Systems Research Laboratory
McMaster University



HTS Coarse Model Error w.r.t. em before any Neuromodeling
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learning set: 13 base points with “star” distribution

testing set: 7 random base points in the region of interest 
(not seen in the learning set)
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FM Neuromodel for the HTS Filter (3LP:7-5-1)

cx
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FM Neuromodel for the HTS Filter (3LP:7-5-1)

responses using em (•) and FMN model (−) at the three learning and three testing points
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HTS FM Neuromodel Error w.r.t. em

in the learning set in the testing set
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FPSM Neuromodel for the HTS Filter (3LP:7-7-3)

xf = [L1 L2 L3 S1 S2 S3] T

fc RR ≈

ANN

fx fRSonnet's
em

OSA90

ωc

ω

xf
•

xc
•

xf
• = [L2 L3 S2 S3] T xc

• = [L1c S1c] T

Simulation Optimization Systems Research Laboratory
McMaster University



FPSM Neuromodel for the HTS Filter (3LP:7-7-3)

responses using em (•) and FPSMN model (−) at the three learning and three testing points
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HTS FPSM Neuromodel Error w.r.t. em

in the learning set in the testing set
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FPSM Neuromodel for the HTS Filter: Fine Frequency Sweep Results

comparison between em (•) and FPSMN model (−) at two learning and one testing points
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Other Applications of SM based Neuromodels
(Bandler et al., 2000, 2001)

Neural Space Mapping (NSM) Optimization

EM-based Statistical Analysis

EM-based Yield Optimization

Neural Inverse Space Mapping (NISM) Optimization
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Conclusions

we describe novel applications of Space Mapping technology 
to neuromodeling

five powerful SM based neuromodeling techniques are described

these techniques
• exploit the vast set of available empirical models
• decrease the fine model evaluations needed for training
• improve generalization ability
• reduce complexity of the ANN topology

w.r.t. classical neuromodeling

frequency-sensitive neuromappings expand the usefulness
of empirical quasi-static models

Space Mapping based neuromodels can be exploited for efficient EM 
optimization, statistical analysis and yield optimization
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