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Artificial Neural Networks (ANN) in Microwave Design

ANNs are suitable models for microwave circuit optimization and statistical design (Zaabab, 
Zhang and Nakhla, 1995, Gupta et al., 1996, Burrascano and Mongiardo, 1998, 1999)

once they are trained, the neuromodels can be used for optimization within the region of 
training

the principal drawback of this ANN optimization approach is the cost of generating 
sufficient learning samples

the extrapolation ability of neuromodels is very poor, making unreliable any solution 
predicted outside the training region

introducing knowledge can alleviate these limitations (Gupta et al., 1999)
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Conventional ANN Optimization Approach

step 1 step 2

many fine model simulations are usually needed
solutions predicted outside the training region are unreliable
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Neural Space Mapping (NSM) Optimization

exploits the SM-based neuromodeling techniques 
(Bandler et al., 1999)

coarse models are used as sources of knowledge that reduce the amount of learning data and 
improve the generalization and extrapolation performance

NSM requires a reduced set of upfront learning base points

the initial learning base points are selected through sensitivity analysis using the coarse 
model

neuromappings are developed iteratively: their generalization performance is controlled by 
gradually increasing their complexity starting with a 3-layer perceptron with 0 hidden 
neurons
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Neural Space Mapping (NSM) Optimization Concept

step 1 step 2

(2n + 1 learning base points for a 
microwave circuit with n design 
parameters)
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Neural Space Mapping (NSM) Optimization Concept (continued)

step 3 step 4
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Neuromappings

Space Mapped neuromapping Frequency-Dependent Space
Mapped neuromapping
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Neuromappings (continued)

Frequency Mapped neuromapping Frequency Space
Mapped neuromapping
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Neuromappings (continued)

Frequency Partial-Space 
Mapped neuromapping
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Neural Space Mapping (NSM) Optimization Algorithm
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Start

Calculate the fine response
Rf (xf ) SM BASED NEUROMODELING:

Find the simplest neuromapping P
such that

Rf (xf 
(l) , ωj) ≈  Rc(P (xf

(l) , ωj))

l = 1,..., Bp and j = 1,..., Fp

COARSE OPTIMIZATION: find the
optimal coarse model solution xc

* that
generates the desired response R*

Rc(xc
* )  =  R*

Form a learning set with Bp = 2n+1 base
points, by selecting 2n additional points
around xc

*, following a star distribution

Update xf

Choose the coarse optimal solution as
a starting point for the fine model

xf  =  xc
*

SMBNM OPTIMIZATION:
Find the optimal xf such that

RSMBN (xf ) = Rc(P (xf )) ≈  R*

Rf (xf ) ≈  R* no
yesEnd

Include the new xf  in the learning
set and increase Bp by one



HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter
(Westinghouse, 1993)

we take L0 = 50 mil, H = 20 mil, 
W = 7 mil, εr = 23.425, loss 
tangent = 3×10−5; the 
metalization is considered 
lossless 

the design parameters are 
xf = [L1 L2 L3 S1 S2 S3] T
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NSM Optimization of the HTS Microstrip Filter

specifications

|S21| ≥ 0.95 for 4.008 GHz ≤ f ≤ 4.058 GHz
|S21| ≤ 0.05 for f ≤ 3.967 GHz and f ≥ 4.099 GHz 

“fine” model: Sonnet’s em with high resolution grid 

“coarse” model: OSA90/hope built-in models of open circuits, microstrip lines and 
coupled microstrip lines
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NSM Optimization of the HTS Filter (continued)

coarse and fine model responses at the optimal coarse solution 

OSA90/hope (−) and em (•)
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NSM Optimization of the HTS Filter (continued)

the initial 2n+1 points are chosen by performing sensitivity analysis on the coarse model: a 
3% deviation from xc

* for L1, L2, and L3 is used, while a 20% is used for S1, S2, and S3

coarse and fine model responses at base points 

OSA90/hope em
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NSM Optimization of the HTS Filter (continued)

learning errors at base points 

before any neuromapping mapping ω , L1 and S1 with a 3LP:-7-5-3
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NSM Optimization of the HTS Filter (continued)

fine model response (•) at the next point predicted by the first NSM iteration and optimal 
coarse response (−)

(3LP:7-5-3,ω, L1, S1)
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Bandstop Microstrip Filter with Quarter-Wave Open Stubs

we take H = 25 mil, W0 = 25 
mil, εr = 9.4 (alumina)

the design parameters are 
xf = [W1 W2 L0 L1 L2] T
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NSM Optimization of the Bandstop Filter

specifications

|S21| ≤ 0.05 for 9.3 GHz ≤ f ≤ 10.7 GHz
|S21| ≥ 0.9 for f ≤ 8 GHz and f ≥ 12 GHz 

“fine” model: Sonnet’s em with high resolution grid 

“coarse” model: transmission line sections and empirical formulas
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NSM Optimization of the Bandstop Filter (continued)

coarse and fine model responses at the optimal coarse solution 

coarse model (−) and em (•)

the initial 2n+1 points are chosen by performing sensitivity analysis on the coarse model: a 
50% deviation from xc

* for W1, W2, and L0 is used, while a 15% is used for L1, and L2
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NSM Optimization of the Bandstop Filter (continued)

fine model response (•) at the next point predicted by the second NSM iteration and optimal 
coarse response (−)

(3LP:6-3-2,ω,W2)
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Conclusions

we present an innovative algorithm for EM optimization based on Space Mapping 
technology and Artificial Neural Networks

Neural Space Mapping (NSM) optimization exploits our SM-based neuromodeling 
techniques

an initial mapping is established by performing upfront fine model analysis at a reduced 
number of base points

coarse model sensitivity is exploited to select those base points

Huber optimization is used to train simple SM-based neuromodels at each iteration

the SM-based neuromodels are developed without using testing points: their generalization 
performance is controlled by gradually increasing their complexity starting with a 3-layer 
perceptron with 0 hidden neurons
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