
2006 IEEE MTT-S International Microwave Symposium, San Francisco, CA, June 15, 2006 

EM-Based Statistical Analysis and Yield Estimation Using Linear-Input and Neural-Output Space Mapping
José.E. Rayas-Sánchez and Vladimir Gutiérrez-Ayala

EM-Based Statistical Analysis and Yield 
Estimation Using Linear-Input and 

Neural-Output Space Mapping

José E. Rayas-Sánchez and Vladimir Gutiérrez-Ayala

Research Group on Computer-Aided Engineering of Circuits and Systems (CAECAS)
Department of Electronics, Systems and Informatics

Instituto Tecnológico y de Estudios Superiores de Occidente (ITESO)
Guadalajara, Mexico, 45090

http://www.desi.iteso.mx/caecas/

presented at

2006 IEEE MTT-S International Microwave Symposium, San Francisco, CA, June 15, 2006 

2

Outline

EM-based statistical analysis

Input Space Mapping

Linear-Input Neural-Output Space Mapping (LINO-SM)

LINO-SM approach to yield estimation

Constrained Broyden-Based Space Mapping

Training the Output Neuromapping

Examples

Conclusions



2006 IEEE MTT-S International Microwave Symposium, San Francisco, CA, June 15, 2006 

EM-Based Statistical Analysis and Yield Estimation Using Linear-Input and Neural-Output Space Mapping
José.E. Rayas-Sánchez and Vladimir Gutiérrez-Ayala

3

EM-based Statistical Analysis

Statistical analysis and yield prediction are crucial for 
manufacturability

Reliable yield prediction typically requires massive amount 
of high-fidelity simulations (full-wave EM simulations)

Performing Monte Carlo yield analysis by directly using 
EM simulations is not feasible for most practical problems

We propose using linear-input neural-output space mapping
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Input Space Mapping
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Linear-Input Neural Output Space Mapping
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LINO-SM approach to Yield Estimation
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SM and P through 
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Obtaining P and xf
SM

We apply a constrained Broyden-based algorithm to solve 
the following system of nonlinear equations

where xc = P(xf) is evaluated through

p is the number of points of the independent variable and 
the j-th parameter extraction error vector is given by
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Algorithm for Constrained Broyden-Based SM
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Generating Learning and Testing Points
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10

Training the Output Neuro Mapping
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Two-Section Impedance Transformer
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Specs
|S11| ≤ 0.5 for
0.5 GHz ≤ f ≤ 1.5 GHz

xf = [L1 L2]T
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Impedance Transformer – Starting Point
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Impedance Transformer – SM Solution
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Impedance Transformer – Training Q
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Impedance Transformer – LINOSM Solution
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Impedance Transformer – LISM Yield
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Impedance Transformer – Fine Model Yield
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Impedance Transformer – LINOSM Yield
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Microstrip Notch Filter
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W50 = 31mil
εr = 2.2
loss tan = 0.0009
(RT Duroid 5880)
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Microstrip Notch Filter (cont)

Specifications
|S21| ≤ 0.05 for 13.19GHz ≤ f ≤ 13.21GHz
|S21| ≥ 0.95 for  f ≤ 13GHz and f ≥ 13.4GHz
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Microstrip Notch Filter – Fine Model
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Microstrip Notch Filter – Coarse Model
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Microstrip Notch Filter – Starting Point
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Microstrip Notch Filter – SM Solution
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Microstrip Notch Filter – Training Q
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Microstrip Notch Filter – LINOSM Solution 
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Microstrip Notch Filter – LISM Yield
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Microstrip Notch Filter – LINOSM Yield
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Conclusions

We describe a method for highly accurate EM-based 
statistical analysis and yield estimation of RF and 
microwave circuits

It consists of applying a constrained Broyden-based linear-
input space mapping, followed by a neural-output space 
mapping, in which the responses, the design parameters and 
independent variable are mapped

The output neuromodel is trained using reduced sets of 
learning and testing samples

The resultant linear-input neural-output space mapped 
model is used as a very efficient vehicle for accurate 
statistical analysis and yield prediction


