CIRCUIT DESIGN BY OPTIMIZATION

Dr. J. E. Rayas-Sánchez

Optimizing a Multiple-Feedback 2nd Order Band-Pass Filter: A Solution

Consider the following multiple-feedback 2nd order bandpass active filter. At a resonant frequency $f_{0}=15 \mathrm{KHz}$, the magnitude of the voltage gain should be $\left|A_{v}\right|=800$, with a bandwidth $B W=750 \mathrm{~Hz}$.

Assuming an ideal Op-Amp, an exact analytical solution can be found following [1]. If $C_{1}=C_{2}=1 \mathrm{nF}$, and $f_{0}=15$
 KHz with $B W=750 \mathrm{~Hz}$, then $Q=20,\left|A_{v}\right|=800$ at f_{0}, yielding $R_{1}=265.26 \Omega$ and $R_{2}=424.41 \mathrm{~K} \Omega$.

1. Optimization Variables and Starting Point

The selected vector of optimization variables is $\boldsymbol{x}=\left[\begin{array}{lll}R_{1}(\Omega) & R_{2}(\mathrm{~K} \Omega) & C(\mathrm{nF})\end{array}\right]^{\mathrm{T}}$, with $C=C_{1}=C_{2}$.
The starting point for optimization is $\boldsymbol{x}^{(0)}=\left[\begin{array}{lll}265.26 & 424.41 & 1\end{array}\right]^{\mathrm{T}}$.

Filter response at $\boldsymbol{x}^{(0)}$

Using ideal Op-Amp

Using Op-Amp uA741

2. Design Specifications

Let $\left|A_{\nu}\right| 3 \mathrm{~dB}=800 / \sqrt{2}, f_{\mathrm{L}}=f_{0}-\frac{B W}{2}$, and $f_{\mathrm{H}}=f_{0}+\frac{B W}{2}$.
Design specs are:
$\left|A_{\nu}\right|=800$ at $f=f_{0}$
$\left|A_{v}\right| \leq\left|A_{\nu}\right| 3$ dB for $f<f_{\mathrm{L}}$
$\left|A_{\nu}\right| \leq\left|A_{\nu}\right| 3 \mathrm{~dB}$ for $f>f_{\mathrm{H}}$

3. Formulation of the Optimization Problem

$$
x^{*}=\arg \min _{x} \max \left\{\ldots e_{k}(x) \ldots\right\}
$$

where the k-th error function is given by

$$
e_{k}(\boldsymbol{x})=\left\{\begin{array}{c}
\frac{\left|A_{v}\right|(\boldsymbol{x})}{\left|A_{v}\right|_{3 \mathrm{~dB}}}-1 \text { for } f_{k}<f_{\mathrm{L}} \\
\frac{\left|\left(\left|A_{v}\right|(\boldsymbol{x})-800\right)\right|}{\varepsilon}-1 \text { for } f_{0}-\Delta f<f_{k}<f_{0}+\Delta f \\
\frac{\left|A_{v}\right|(x)}{\left|A_{v}\right|_{3 \mathrm{~dB}}}-1 \text { for } f_{k}>f_{\mathrm{H}}
\end{array}\right.
$$

where f_{k} is the k-th simulated frequency point, $\varepsilon=0.01(800)$ and $\Delta f=10 \mathrm{~Hz}$.

4. Objective Function Implementation

```
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% Objective Function for a Multiple-Feedback 2nd Order Band-Pass Filter
function MaxError = OF_MFBP2(x)
Avr = 800;
Avr_3dB = Avr/sqrt(2);
fo = 15e3;
BW = 750;
fL = fo - BW/2;
fH = fo + BW/2;
% Calculate Filter Response in Frequency Band of Interest
IF = 12.5e3;
FF = 17.5e3;
FP = 501;
[f,mAv,pAv] = MFBP2_SPICE(x,IF,FF,FP);
% Calculate Error Functions
DeltaAv = Avr/100;
e1 = []; % Initialize error e1.
e2 = []; % Initialize error e2.
e3 = []; % Initialize error e3.
for k = 1:FP
    if f(k) < fL
        e1n = mAv(k)/Avr_3dB - 1; % Upper bound for low frequencies.
        e1 = [e1 e1n];
    elseif f(k) > fH
        e3n = mAv(k)/Avr_3dB - 1; % Upper bound for high frequencies.
        e3 = [e3 e3n];
    else
        if f(k)>fo-10 && f(k)<fo+10
                e2n = abs(mAv(k)-Avr)/DeltaAv - 1; % Equality constraint
                e2 = [e2 e2n]; % for resonant frequency.
        end
    end
end
% Calculating Objective Function Value
e = [e1 e2 e3];
MaxError = max(e);
```


5. Optimization Results

$$
\boldsymbol{x}^{(0)}=\left[\begin{array}{lll}
265.26 & 424.41 & 1
\end{array}\right]^{\mathrm{T}} .
$$

A) Using the Nelder-Mead Method
options = optimset('MaxFunEvals',1000,'MaxIter',1000,'TolX',1e-2);
[Xopt,FunVal, EF,output] = fminsearch('OF_MFBP2',Xo,options);

FP	$\boldsymbol{x}^{* T}$			$u\left(x^{*}\right)$	iter	OFE
151	$\left[\begin{array}{llll}273.373 & 507.51 & 0.673232\end{array}\right]$	-0.15099	91	163		
501	$\left[\begin{array}{llll}273.291 & 507.078 & 0.673642\end{array}\right]$	-0.12368	94	175		
1001	$\left[\begin{array}{lll}272.493 & 505.297 & 0.675872\end{array}\right]$	-0.12365	83	153		
50	$\left[\begin{array}{llll}5.0 \mathrm{e}+12 & 3.7 \mathrm{e}+12 & 3.4 \mathrm{e}+10\end{array}\right]$	-1	120	377		
51	$\left[\begin{array}{llll}273.373 & 507.51 & 0.673232\end{array}\right]$	-0.15099	91	163		

iter: number of iterations.
OFE: number of objective function evaluations $=$ WinSpice simulations.
It is seen that the case with 50 frequency points fails because the error function at the resonant frequency is not computed in the objective function.
Using 'TolX' $=1 e-8$ and $F P=501$, Nelder-Mead requires much more iterations and function evaluations: $\boldsymbol{x}^{*}=\left[\begin{array}{lll}269.718 & 497.799 & 0.684895\end{array}\right]^{\mathrm{T}}, u\left(x^{*}\right)=-0.1247$, iter $=496$, $\mathrm{OFE}=891$.
B) Using Gradient-Based Methods (gradients calculated by finite central differences, $h=1 e-5$) MaxIter $=1000 ;$ epsg $=1 e-8$; epsx $=1 e-8$; $\mathrm{FP}=501$

Method	$\boldsymbol{x}^{* T}$			$u\left(\boldsymbol{x}^{*}\right)$	iter	OFE
Steepest Descent	$\left[\begin{array}{llll}244.082 & 433.863 & 0.775263\end{array}\right]$	-0.13169	12	387		
Conjugate Gradient	$\left[\begin{array}{llll}243.651 & 434.58 & 0.77494\end{array}\right]$	-0.13005	5	195		
Quasi-Newton (BFGS)	$\left[\begin{array}{llll}244.152 & 434.33 & 0.773367\end{array}\right]$	-0.10364	4	155		

[^0]
[^0]: [1] S. Franco, Design with Operational Amplifiers and Analog Integrated Circuits. New York, NY: McGraw-Hill, 1988, pp. 130-131.

